\(\sqrt{2}\)Q=\(\sqrt{2x+4-6\sqrt{2x-5}}\)= \(\sqrt{2x-5}\) -3 .sau đó =>Q
\(\sqrt{2}\)Q=\(\sqrt{2x+4-6\sqrt{2x-5}}\)= \(\sqrt{2x-5}\) -3 .sau đó =>Q
\(ChoQ=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\left(\frac{1-x}{\sqrt{2}}\right)^2\)
a, rút gọn
b, chứng minh nếu 0<x<1 thì Q>0
c, tìm GTLN của Q
\(ChoA=\frac{1}{2\left(1+\sqrt{x}+2\right)}+\frac{1}{2\left(1-\sqrt{x}+2\right)}\)
a, tìm x để a có nghĩa
b, rút gon A
c, tìm X nguyên để A nguyên
\(ChoA=\left(\frac{\sqrt{a}}{\sqrt{a-1}}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2}{a-1}\right)\)
a, Rút gọn A
b, tính A Khi a=3+\(2\sqrt{2}\)
Rút gọn
a)\(\sqrt{75}+\sqrt{75}-\)\(\sqrt{192}\)
b)3\(\sqrt{2x}-5\sqrt{2x}-5\sqrt{2x}+9-6\sqrt{2x}\left(x>0\right)\)
c)3\(\sqrt{2x}-4\sqrt{8x}-5\sqrt{50x}\left(x>0\right)\)
d)\(\frac{1}{x^2-y^2}.\sqrt{\frac{2\left(x+y\right)^2}{3}}\left(x\ge0;y\ge0;x\ne y\right)\)
e)\(\left(3\sqrt{2}+\sqrt{3}\right).\sqrt{2}\sqrt{54}\)
f)\(2\sqrt{21}-\left(\sqrt{28}+\sqrt{12}-\sqrt{7}\right).\sqrt{7}\)
1 Rút gọn
\(B\)=\(\sqrt{x+\sqrt{2x-1}}\) + \(\sqrt{x-\sqrt{2x-1}}\)
\(C\)=\(\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
2 tìm x thỏa mãn
\(A=\sqrt{\frac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\)
Giúp mình với
a) \(Q=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+2x\sqrt{x}+y\sqrt{y}}{x\sqrt{x}+y\sqrt{y}}\left(x>0,y>0\right)\)
Rút Gọn
b) \(M=\frac{x^2-\sqrt{2}}{x^4+\left(\sqrt{3}-\sqrt{2}\right)x^2-\sqrt{6}}\)
Rút Gọn
Rút gọn
a) \(\sqrt{75}+\sqrt{48}-\)\(\sqrt{192}\)
b)\(3\sqrt{2x}-5\sqrt{2x}-5\sqrt{2x}=9-6\sqrt{2x}\left(x>0\right)\)
c)\(3\sqrt{2x}-4\sqrt{8x}-5\sqrt{50x}\left(x>0\right)\)
d)\(\frac{1}{x^2-y^2}.\sqrt{\frac{2\left(x+y\right)^2}{3}}\left(x\ge0;y\ge0;x\ne y\right)\)
e)\(\left(3\sqrt{2}+\sqrt{3}\right).\sqrt{2}-\sqrt{54}\)
f)\(2\sqrt{21}-\left(\sqrt{28}+\sqrt{12}-\sqrt{7}\right).\sqrt{7}\)
Các bạn ơi giải giúp mình với :
Rút gọn các biểu thức:
(\(\sqrt{99}-\sqrt{18}-\sqrt{11}\)) *\(\sqrt{11}+3\sqrt{22}\)
\(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}\)
\(\left(2\sqrt{3}+\sqrt{5}\right)\)*\(\sqrt{3}-\sqrt{60}\)
Khai triển và rút gọn các biểu thức(với x,y không âm):
(\(1-\sqrt{x}\))*\(\left(1+\sqrt{x}+x\right)\)
\(\left(4\sqrt{x}-\sqrt{2x}\right)\)*\(\left(\sqrt{x}-2\sqrt{x}\right)\)
\(\left(2\sqrt{x}+\sqrt{y}\right)\)*\(\left(3\sqrt{x}-2\sqrt{y}\right)\)
Bài 1: Rút gọn
a. \(\left(5-2\sqrt{3}\right)^2+\left(5+2\sqrt{3}\right)^2\)
b. \(\left(\sqrt{5}+\sqrt{2}\right)^2-\left(2\sqrt{5}+1\right)\left(2\sqrt{5}-1\right)-\sqrt{40}\)
c. \(\left(\sqrt{2}-1\right)^2-\frac{2}{3}\sqrt{4}+\frac{4\sqrt{2}}{5}+\sqrt{1\frac{11}{15}}-\sqrt{2}\)
d. \(\left(\sqrt{6}-\sqrt{18}+5\sqrt{2}-\frac{1}{2}\sqrt{8}\right)2\sqrt{6}+2\sqrt{3}\)
e. \(\left(2\sqrt{3}-3\sqrt{2}\right)^2+6\sqrt{6}+3\sqrt{24}\)
Bài 2: Rút gọn
A =\(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}:\frac{\sqrt{x+1}}{x-2\sqrt{x}+1}\right)\)(x>0 ; x khác 1)
Cho:
\(P=\left(\frac{\sqrt{x}+1}{\sqrt{2x}+1}+\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right):\left(1+\frac{\sqrt{x}+1}{\sqrt{2x}+1}-\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
a) Rút gọn P
b) Tính P khi \(x=\frac{1}{2}\left(3+2\sqrt{2}\right)\)
A=\(\frac{6x-\left(x+6\right)\sqrt{x}-3}{2\left(x-4\sqrt{x}+3\right)\left(2-\sqrt{x}\right)}-\frac{3}{-2x+10\sqrt{x}-12}-\frac{1}{3\sqrt{x}-x-2}\)
Rút gọn