Chứng tỏ rằng:
\(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{149}+\frac{1}{150}>\frac{5}{6}\)
Chứng tỏ rằng: \(\frac{1}{1}\times\frac{1}{3}\times\frac{1}{5}\times.....\times\frac{1}{99}=\frac{2}{51}\times\frac{2}{52}\times\frac{2}{53}\times.....\times\frac{2}{100}\)
Chứng tỏ A = 1/51 + 1/52 + 1/53 + .....+1/99 + 1/100 <1/2
Chứng minh :(1+1/3+1/5+...+1/99)-(1/2+1/4+1/6+...+1/100)=1/51+1/52+1/53+...+1/100
Chứng minh: 1- 1\2 + 1\3 - 1\4 + 1 \5 - 1\6 + ....... + 1\99 -1\100 = 1\51 + 1\52 + 1\53 + ..........+1\100
Chứng tỏ rằng: 1/50 + 1/51 + 1/52 + 1/53 + ... + 1/98 + 1/99 > 1/2. ( giải thích rõ ràng, dễ hiểu).
Chứng minh rằng:
(1+\(\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\))-(\(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\))=\(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
[1+1/3+1/5+....+1/99]-[1/2+1/4+1/6+...+1/100] = 1/51+1/52+1/53+....+1/100
Chứng tỏ rằng :
(1+1/3+1/5+1/7+......+1/101)-(1/2+1/4+1/6+...+1/100) = 1/52+1/53+1/54+.....+1/100+1/101+1/102