Ta có:\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)
\(\Rightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{ab}{cd}\)
\(\Rightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}=\dfrac{a}{c}=\dfrac{b}{d}\)
Vậy \(\dfrac{a}{c}=\dfrac{b}{d}\left(\text{đ}pcm\right)\)