a.
\(y'=\frac{-1-m^2}{\left(x-1\right)^2}< 0\Rightarrow\) hàm nghịch biến trên mỗi khoảng xác định
\(\Rightarrow\) Không tồn tại GTLN của hàm trên \(\left[1;3\right]\) (chắc bạn ghi sai đề bài vì trên [1;3] có điểm đặc biệt \(x=1\) khiến hàm ko xác định đồng thời hàm nghịch biến nên \(y_{max}=+\infty\) trên đoạn này)
b.
\(y\ge3\) ; \(\forall x\in\left[-3;0\right]\Leftrightarrow\min\limits_{\left[-3;0\right]}y\ge3\)
Xét hàm \(f\left(x\right)=x^4-2x^2+1-m\)
\(f'\left(x\right)=4x^3-4x=0\Rightarrow x=\left\{-1;0;1\right\}\)
\(f\left(-3\right)=64-m\) ; \(f\left(-1\right)=m\) ; \(f\left(0\right)=1-m\)
Nếu \(f\left(x\right)=0\) có nghiệm thuộc \(\left[-3;0\right]\Leftrightarrow0\le m\le64\) thì \(\min\limits_{\left[-3;0\right]}y=0\) (ktm)
\(\Rightarrow\left[{}\begin{matrix}m< 0\\m>64\end{matrix}\right.\)
Khi đó \(\min\limits_{\left[-3;0\right]}=min\left\{\left|64-m\right|;\left|m\right|\right\}\)
- Nếu \(y_{min}=\left|64-m\right|\Rightarrow\left\{{}\begin{matrix}\left|m\right|\ge\left|64-m\right|\\\left|64-m\right|\ge3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ge32\\\left[{}\begin{matrix}m\ge67\\m\le61\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m\ge67\)
- Nếu \(y_{min}=\left|m\right|\Rightarrow\left\{{}\begin{matrix}\left|64-m\right|\ge\left|m\right|\\\left|m\right|\ge3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\le32\\\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m\le-3\)
Vậy \(\left[{}\begin{matrix}m\ge67\\m\le-3\end{matrix}\right.\)