Cho \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=4\left(x^2+y^2+z^2-xy-yz-zx\right)\). Chứng minh rằng \(x=y=z\)
Chứng minh rằng:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz=\left(x+y+z\right)\left(xy+yz+zx\right)\)
Cho các số dương x, y, z thỏa mãn \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Chứng minh rằng: \(A=\sqrt{\frac{x^2}{yz\left(1+x^2\right)}}+\sqrt{\frac{y^2}{zx\left(1+y^2\right)}}+\sqrt{\frac{z^2}{xy\left(1+z^2\right)}}\le\frac{3}{2}\)
103,CM:\(\frac{\frac{x^2\left(z-y\right)}{yz}+\frac{y^2\left(x-z\right)}{xz}+\frac{z^2\left(y-x\right)}{xy}}{\frac{x\left(z-y\right)}{yz}+\frac{y\left(x-z\right)}{zx}+\frac{z\left(y-x\right)}{xy}}=x+y+z\)
Phân tích đa thức thành nhân tử:
Chứng minh rằng: x2 + y2 + z2 - xy - yz - zx = \(\dfrac{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{2}\) và x2 + y2 + z2 - xy - yz - zx = 0 khi nào.
a) CMR: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right).\left(x+y+z\right)>=9\) với mọi x, y, z >0
b) Cho các số dương x, y, z thỏa mãn x + y + z <= 3
Chứng minh rằng: \(\frac{1}{x^2+y^2+z^2}+\frac{2009}{xy+yz+zx}>=670\)
Cho \(\left\{{}\begin{matrix}x^2-yz=a\\y^2-xz=b\\z^2-xy=c\end{matrix}\right.\) với x, y, z thuộc Z và x, y, z khác 0. Chứng minh:\(ax+by+cz⋮x+y+z\); a, b, c, d là các số nguyên khác nhau
Cho x, y, z thỏa mãn : \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\). Cmr :
\(\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{zx\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\ge\dfrac{3}{2}\).
Cho 3 số x,y,z thỏa mãn : x+y +z=3 . Tìm GTLN của P= xy+ yz+zx
Tính
\(\dfrac{x^2-yz}{\left(x+y\right)\left(x+z\right)}+\dfrac{y^2-zx}{\left(y+z\right)\left(y+x\right)}+\dfrac{z^2-xy}{\left(z+x\right)\left(z+y\right)}\)