BĐT đã cho <=> 1 + y \(\ge\) 4.(1 - x).(1 - y).(1 - z)
Áp dụng BĐT : 4ab \(\le\) (a + b)2 ta có: 4.(1 - x)(1 - z) \(\le\) (1 - x + 1 - z)2 = (1 + y)2
=> 4.(1 - x)(1 - y)(1 - z) \(\le\) (1 + y)2.(1 - y) = (1 + y).(1 -y2) \(\le\) (1 + y) .1 = 1+ y => đpcm
Dấu "=" xảy ra khi 1 - y2 = 1 và x = z => y = 0 ; x = z = 1/2