Cho các số thực dương x, y, z thỏa mãn : x + y + z=1. Tìm GTLN của biểu thức :
A= \(\sqrt{x^2+xyz}+\sqrt{y^2+xyz}+\sqrt{z^2+xyz}+9\sqrt{xyz}\)
Các bạn ơi giúp mik với ! mik dang cần gấp ạ !
Cho x, y, z là ba số thực dương thỏa mãn: x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức : Q = \(\dfrac{x+1}{1+y^2}\)+\(\dfrac{y+1}{1+z^2}\)+\(\dfrac{z+1}{1+x^2}\)
cho 3 số dương x,y,z thỏa mãn điều kiện x+y+z=2. Tìm GTNN của biểu thức\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
giúp mình
a) cho các số thực dương x,y , z thỏa mãn x+y+z=4 cmr ≥1
b) 1. cho x,y,z ϵR, chứng minh (x+y+z)\(^{^{ }2}\) ≤3(x\(^{^{ }2}\)+y\(^{^{ }2}\)+z\(^{^{ }2}\))
2.cho các số x,y,zlớn hơn 0thaor mãn x+y+z=12
tìm GTLN của biểu thức A=\(\sqrt{4x+2\sqrt{x}+1}\) +\(\sqrt{4y+2\sqrt{y}+1}\) +\(\sqrt{4z+2\sqrt{z}+1}\)
Cho x,y,z >0 tm x+y+z=3
C/m :\(\dfrac{x^3}{y^3+8}+\dfrac{y^3}{z^3+8}+\dfrac{z^3}{x^3+8}\ge\dfrac{1}{9}+\dfrac{2}{27}\left(xy+yz+zx\right)\)
Cho các số dương x,y z thỏa mãn:
\(\sqrt{x}+\sqrt{y}+\sqrt{z}=2\)
\(x+y+z=2\)
Tính giá trị biểu thức P= \(\sqrt{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\left(\dfrac{\sqrt{x}}{x+1}+\dfrac{\sqrt{y}}{y+1}+\dfrac{\sqrt{z}}{z+1}\right)\)
Tìm các số x, y thỏa mãn đẳng thức:
a, \(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
b, \(\sqrt{x-2}+\sqrt{y+2009}+\sqrt{z-2010}=\dfrac{1}{2}\left(x+y+z\right)\)
câu 1 ) Cho các số thực tùy ý a,b,c > 1. Tìm GTNN của biểu thức
\(M=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{2017c^2}{c-1}\)
câu 2 ) cho x,y,z là các số thực dương thỏa mãn 5(x2+y2+z2)-9x(y+z)-18yz=0
Tìm giá trị nhỏ nhất của bieu thức \(Q=\frac{2x-y-z}{y+z}\)