Áp dụng bất đẳng thức\(\left(a+b\right)^2>=4ab\)
Ta có
2P=(2x+4y+6z)(6x+3y+2z) <= (8(x+y+z)-y)^2/4 <= ((8-y)^2)/4 <= (8^2)/4= 16
Dấu "=" xảy ra khi x=1/2; y=0;z=1/2
Do đó max P=8 khi x=1/2;y=0;z=1/2
Áp dụng bất đẳng thức\(\left(a+b\right)^2>=4ab\)
Ta có
2P=(2x+4y+6z)(6x+3y+2z) <= (8(x+y+z)-y)^2/4 <= ((8-y)^2)/4 <= (8^2)/4= 16
Dấu "=" xảy ra khi x=1/2; y=0;z=1/2
Do đó max P=8 khi x=1/2;y=0;z=1/2
Cho các số thực không âm x, y, z thỏa mãn x + y + z = 6. CMR:
a, \(\sqrt{x+7}+\sqrt{y+7}+\sqrt{z+7}\le9\)
b, \(\sqrt{3x+2y}+\sqrt{3y+2z}+\sqrt{3z+2x}\le3\sqrt{10}\)
c, \(\sqrt{2x+5}+\sqrt{2y+5}+\sqrt{2z+5}\le9\)
xho x, y, z là các số dương thoả mãn x^2+y^2+z^2>=1/3
Tìm GTNN của biểu thức
\(A=\frac{x^3}{2x+3y+5z}+\frac{y^3}{2y+3z+5x}+\frac{z^3}{2z+3x+5y}\)
Cho x,y,z dương thoả xyz=1.chứng minh x^2y^2/(2x^2+y^2+3x^2y^2) + y^2z^2/(2y^2+z^2+3y^2z^2) + z^2x^2/2z^2+x^2+3z^2x^2 <= 1/2
help
Cho x,y,z là các số dương thỏa mãn \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\)
Chứng minh \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}=< \frac{3}{2}\)
Cho các số dương x;y;z thỏa mãn \(xyz=1\) . Chứng minh rằng :
\(\frac{x^2y^2}{2x^2+y^2+3x^2y^2}+\frac{y^2z^2}{2y^2+z^2+3y^2z^2}+\frac{x^2z^2}{2z^2+x^2+3z^2x^2}\le\frac{1}{2}\)
Cho xyz \(\ne\)0 thoả mãn \(x^3y^3+y^3z^3+x^3z^3=3x^2y^2z^2\).Tính \(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
Làm nhanh giùm vs!!!!!
Cho xyz khác 0 thỏa mãn: x^3y^3 + y^3z^3 + z^3x^3 = 3x^2y^2z^2
Tính giá trị của biểu thức: M = ( 1+ x/y )( 1 + y/z )( 1 + z/x )
Cho các số dương x,y, z thỏa mãn xyz=1
CMR: \(\frac{x^2y^2}{2x^2+y^2+3x^2y^2}\)+\(\frac{y^2z^2}{2y^2+z^2+3y^2z^2}\)+\(\frac{z^2x^2}{2z^2+x^2+3z^2x^2}\)\(\le\)\(\frac{1}{2}\)
Giả sử x, y, z là các số dương thỏa mãn điều kiện \(xy^2z^2+x^2z+y=3z^2\)
Tìm GTLN P =\(z^4 \over 1+z^4 (x^4+y^4)\)