\(P=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}=\frac{1}{16}\left(\frac{1}{x}+\frac{4}{y}+\frac{16}{z}\right)\)
\(=\frac{1}{16}\left(\frac{1^2}{x}+\frac{2^2}{y}+\frac{4^2}{z}\right)>=\frac{1}{16}\cdot\frac{\left(1+2+4\right)^2}{x+y+z}=\frac{1}{16}\cdot\frac{7^2}{1}=\frac{1}{16}\cdot49=\frac{49}{16}\)(bđt cauchy schawarz dạng engel)
dấu = xảy ra khi \(\frac{1}{x}=\frac{2}{y}=\frac{4}{z}=\frac{1+2+4}{x+y+z}=\frac{7}{1}=7\Rightarrow x=\frac{1}{7};y=\frac{2}{7};z=\frac{4}{7}\)
vậy min của P là \(\frac{49}{16}\)khi \(x=\frac{1}{7};y=\frac{2}{7};z=\frac{4}{7}\)