\(x+y\le2\Rightarrow-\left(x+y\right)\ge-2\)
Do đó:
\(A=2\left(x+\dfrac{1}{x}\right)+2\left(y+\dfrac{1}{y}\right)-\left(x+y\right)\ge2.2\sqrt{x.\dfrac{1}{x}}+2.2\sqrt{y.\dfrac{1}{y}}-2=6\)
\(A_{min}=6\) khi \(x=y=1\)
\(x+y\le2\Rightarrow-\left(x+y\right)\ge-2\)
Do đó:
\(A=2\left(x+\dfrac{1}{x}\right)+2\left(y+\dfrac{1}{y}\right)-\left(x+y\right)\ge2.2\sqrt{x.\dfrac{1}{x}}+2.2\sqrt{y.\dfrac{1}{y}}-2=6\)
\(A_{min}=6\) khi \(x=y=1\)
Cho x,y,z thỏa mãn \(\frac{3x^2}{2}+y^2+z^2+yz=1\)Tìm GTNN và GTLN của x+y+z. Bài này đã có lâu nhưng em không hiểu cách làm. Mong mọi người hỗ trợ em ạ!
Cho \(x,y>0\)và \(x+y\le2\)Tìm GTNN của \(Q=\left(x+\frac{2}{x}\right)^2+\left(y+\frac{2}{y^2}\right)^2\)Mọi người cứu mình với ạ
cho x,y>0 và x+y=1 . tìm GTNN, GTLN của A=\(\frac{x}{y+1}\)+\(\frac{y}{x+1}\)
cho x,y,z >0 và xyz=1 tìm GTNN của A=\(\frac{x^2}{1+y}\)+\(\frac{y^2}{1+z}\)+\(\frac{z^2}{1+x}\)
Bài 1:Cho x>0;y>0 và \(x+y\le1\) tìm GTNNc của các bt sau
a,\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}\)
\(b,B=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
Bà 2:Cho x+y=1 tìm GTNN của bt
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
Bài 3:Cho x+y+z=3
a,Tìm GTNN của bt \(A=x^2+y^2+z^2\)
b,Tìm GTLN của bt \(B=xy+yz+xz\)
B1.Cho \(1\le x< y\le2\).Tìm GTLN của \(M=\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\)
B2.Cho x,y,z\(\ge0\)TM \(^{x^2+y^2+z^2=1.}\)Tìm GTNN và GTLN của \(T=\frac{x}{1-yz}+\frac{y}{1-zx}+\frac{z}{1-xy}\)
B3.Cho 2 số nguyên dương x,y TM \(x+y\le1\).Tìm GTNN của \(P=\frac{1}{x^2+y^2}+\frac{504}{xy}\)
Các bạn có thể giúp mình được không,mình sắp bị kiểm tra bài rồi.
cho 2 số thực x và y thỏa mãn các điều kiện \(1\le x\le2\), \(1\le y\le2\) tìm giá trị nhỏ nhất của biểu thức
\(A=\frac{x+2y}{x^2+3y+5}+\frac{y+2x}{y^2+3x+5}+\frac{1}{4\left(x+y-1\right)}\)
cho \(x,y\ge0\) t/mãn \(x^2+y^2\le2\) .Tìm GTNN của:
\(A=\frac{1}{1+x}+\frac{1}{1+y}\)
Cho các số dương x,y thỏa mãn \(x+2y\le2\), tìm GTNN của biểu thức \(P=\frac{1}{x^2+4y^2}+\frac{1}{2xy}\)
cho x , y ,z > 0 và x + y + z < hoặc bằng 3 / 2
tìm gtnn của A = x + y + z +\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)