1 nếu m, n là các số tự nhiên thỏa mãn 2m^2+m=3n^2+n thì m- n là số nguyên tố
2 chứng minh với n thuộc Z chẵn và n >4 thì n^4-4n^3-16n^2+16 chia hết cho 383
3 cho a, b là số chính phương lẻ. chứng minh (a-1((b-1) chia hết cho 192
4 tìm nghiệm nguyên tố của phương trình x^2- 2y= 1
Chứng minh rằng không có các số x, y thỏa mãn
a) 2x2 +2x +1 = 0
b) x2 + y2 + 2xy +2y +2x +2 =0
Bài 1. Cho x, y là hai số nguyên dương thỏa mãn x2 + 2y là một số chính phương. Chứng minh rằng x2 + y là tổng của hai số chính phương
Bài 2. Cho a, b là hai số nguyên. Chứng minh rằng 2a2+2b2 là tổng của hai số chính phương
Bài 1 : Cho a,b là số nguyên có a2 + 9ab + b2 chia hết cho 11 .Chứng minh rằng : a2 –b2 chia hết cho 11 .
Bài 2 : Tìm tất cả các cặp số (m,n) là số nguyên dương có A=33m^2+6n-61 +4 là số nguyên tố .
Bài 3 : Cho x,y,z là số tự nhiên có x2+y2=z2 . Chứng minh rằng xy chia hết cho 12 .
Bài 4 : Có bao nhiêu số tự nhiên có hai chữ số có tính chất là chữ số cuối cùng của những số đó bình phương bằng chữ số cuối cùng của những số đó lập phương .
Câu 5 : Each box in a 3x3 table can be colored yellow or red . How many different colorings of the table are there ?
Các bạn giải giúp mình nha
cho x y là 2 số thực thỏa mãn xy >=1, chung minh rang 1/1+X2+1/1+Y2>=2/1+XY
chứng minh giá trị biểu thức sau không phụ thuộc vào giá trị của biến:
a, A = y (x2 - y2) (x2 + y2) - y (x4 - y4)
b, B = (x - 1)3 - (x - 1) (x2 + x + 1) - 3 (1 - x) x
tìm các cặp số nguyên (x,y) thỏa mãn phương trình sau : x2 - y2= 2017
a) Cho x,y,z là các số dương thỏa mãn x2+y2+z2=3, tìm giá trị nhỏ nhất của F=\(\dfrac{x^2+1}{z+2}\)+\(\dfrac{y^2+1}{x+2}\)+\(\dfrac{z^2+1}{y+2}\)
b) Với a,b,c > 0 thỏa mãn ab+bc+ca=3, chứng minh rằng
\(\sqrt{\dfrac{a}{a+3}}\) +\(\sqrt{\dfrac{b}{b+3}}\)+\(\sqrt{\dfrac{c}{c+3}}\)\(\le\)\(\dfrac{3}{2}\)
Cho ba số x, y và z thỏa mãn x + y + z = 0. Chứng minh rằng
2(x5 + y5 + z5) = 5xyz(x2 + y2 + z2).