Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Admin (a@olm.vn)

Cho \(x,y\) là hai số không âm thỏa mãn điều kiện  \(x^3+y^3=2\). Chứng minh rằng  \(x^2+y^2\le2\).

Emma
22 tháng 3 2021 lúc 17:43

Áp dụng BĐT Bunhiacopxky:

\(\left(x^3+y^3\right)\left(x+y\right)\ge\left(x^2+y^2\right)^2\)

\(\Leftrightarrow2\left(x+y\right)\ge\left(x^2+y^2\right)^2\)

\(\Rightarrow4\left(x+y\right)^2\ge\left(x^2+y^2\right)^4\)  \(\left(1\right)\)

Áp dụng BĐT AM-GM: 

\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\) \(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) \(\Rightarrow8\left(x^2+y^2\right)\ge\left(x^2+y^2\right)^4\)

\(\Rightarrow8\ge\left(x^2+y^2\right)^3\)

\(\Rightarrow2\ge x^2+y^2\)hay \(x^2+y^2\le2\)

Khách vãng lai đã xóa
Phạm Bá Huy
13 tháng 7 2021 lúc 13:57

Áp dụng bất đẳng thức Cô si cho ba số dương ta có    

        x^3+x^3+1\ge3\sqrt[3]{x^3.x^3.1}\Leftrightarrow2x^3+1\ge3x^2, đẳng thức xảy ra khi và chỉ khi x=1.

Tương tự,  2y^3+1\ge3y^2. Cộng theo vế hai bất đẳng thức nhận được ta có

             2\left(x^3+y^3\right)+2\ge3\left(x^2+y^2\right)

Sử dụng giả thiết  x^3+y^3=2 suy ra đpcm. Đẳng thức xảy ra khi và chỉ khi      x=y=1

Khách vãng lai đã xóa
Hương	Hà Huỳnh
29 tháng 8 2021 lúc 10:48

x=y=1

Khách vãng lai đã xóa

Các câu hỏi tương tự
Admin (a@olm.vn)
Xem chi tiết
Admin (a@olm.vn)
Xem chi tiết
Admin (a@olm.vn)
Xem chi tiết
Admin (a@olm.vn)
Xem chi tiết
Admin (a@olm.vn)
Xem chi tiết
Admin (a@olm.vn)
Xem chi tiết
Admin (a@olm.vn)
Xem chi tiết
Admin (a@olm.vn)
Xem chi tiết
Admin (a@olm.vn)
Xem chi tiết