Câu 1 cho x,y>0 thỏa mãn xy=6 tìm min Q=2/x+3/y+6/3x+2y
Câu 2 cho x,y là các số thực dương thỏa mãn x+y<=1 tìm min P=(1/x+1/y)nhân với căn (1+x^2y^2)
Bạn nào giúp mình nhanh với mình đang cần gấp T.T
Cho x,y,z>0,3x2+4y2+5z2=2xyz.
Tìm Min D =3x+2y+z
cho x,y,z là số thực không âm thỏa mãn 2x+y+3z=6; 3x+4y-3z+4. Tìm Min P=2x+3y-4z
cho x,y là các số dương thỏa mãn 3x+2y=2
tìm gtln của biểu thức \(P=x^2y^2\left(9x^2+4y^2\right)\)
cho x,y,z là các số thực thỏa mãn 2(y^2 + yz + z^2) + 3x^2 =36 Tìm min và max A=x+y+z
Cho 2 số dương x, y thỏa mãn \(x+y\le3\). Tìm Min của:
\(P=\frac{y+2x}{xy}+\frac{4y-3x}{4}\)
Cho biểu thức f(x;y) \(=\frac{2x^2+3xy^3-4x^2y-7y^3-2018}{3x-2y+\sqrt{3x^4+2y^2+3}-3x\sqrt[3]{y^2}+5}\).Gọi a,b,c là các số thực thỏa mãn:
\(\hept{\begin{cases}\sqrt{2}a+\sqrt[3]{3}b-\left(\sqrt{2}+1\right)c=\sqrt{2}\\2\sqrt{3}a-3\sqrt{2}b-\left(3-2\sqrt{7}\right)c=\sqrt{5}\\3\sqrt[3]{2}a-\left(1-3\sqrt{5}\right)b-2\sqrt{5}c=\sqrt{7}\end{cases}}\).Đặt A = f(a;b) , B = f(b;c), C = f(c;a).
Tìm min \(P=\frac{ABt^2-A^2t-C\left(A-1\right)}{Bt^2-At-C}\)
(Trích đề thi học sinh giỏi máy tính cầm tay)
cho các số thực dương x,y thỏa mãn điều kiện x+y=2016.Tìm giá trị nhỏ nhất của biểu thức:
P=\(\sqrt{5x^2+xy+3y^2}+\sqrt{3x^2+xy+5y^2}+\sqrt{x^2+xy+2y^2}+\sqrt{2x^2+xy+y^2}\)
Cho x, y thỏa mãn \(3x^2+xy+2y^2\le2\). Tìm min, max \(P=x^2+3xy-y^2\)