Lời giải:
\(x+\frac{1}{y};y+\frac{1}{x}\in\mathbb{Z}\Rightarrow \left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)\in\mathbb{Z}\)
\(\Leftrightarrow xy+\frac{1}{xy}+2\in\mathbb{Z}\Rightarrow xy+\frac{1}{xy}\in\mathbb{Z}\)
Ta có:
\(x^2y^2+\frac{1}{x^2y^2}=\left(xy+\frac{1}{xy}\right)^2-2\) có \(xy+\frac{1}{xy}\in\mathbb{Z}\) và \(2\in\mathbb{Z}\) nên \(x^2y^2+\frac{1}{x^2y^2}\in\mathbb{Z}\)
Ta có đpcm.