Tính giá trị biểu thức
A=\(2x+2y+3xy\left(x+y\right)+5\left(x^3y_{ }^2+x^2y^3\right)\)
tại x+y=0
B=\(3xy\left(x+y\right)+2x^3y+2x^2y^2\)
tại x+y=0
tính giá trị của các đa thức sau biết x+y-2=0
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
\(N=x^3-2x^2-xy^2+2xy+2y+2x-2\)
\(P=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
cho biết x+y-2=0
tính a,M=\(x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
b,N=\(x^3-2x^2-xy^2+2xy+2y+2x-2\)
c,P=\(x^4+2x^3y-2x^3+x^2y^2-2x^22y-x\left(x+y\right)\)\(+2x+3\)
TÍNH GIÁ TRỊ CỦA ĐA THỨC SAU BIẾT: x+y=0
\(A=2x+2y+3xy\left(x+y\right)+5\left(x^3y^2+x^2y^3\right)+2\)
\(B=3xy\left(x+y\right)+2x^3y+2x^2y^2+5\)
tính giá trị của các đa thức sau; biết x+y-2=0
a)M=\(x^3+x^2y^2-2x^2-xy-y^2+3y+x-1\)
b)N=\(x^3-2x^2-xy^2+2xy+2y+2x-2\)
c)P=\(x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
Cho \(x+y=1\). Tính :
a) \(A=x^4-xy^3+yx^3-y^4+y^3-x^3-2\)
b) \(B=3x+3y+2x^2y+2xy^2-2xy+5x^3y^2+5x^2y^3-5x^2y^2+3\)
c) \(C=3xy\left(x+y\right)+2x^3y+2x^2y^2-2x^2y+\sqrt{16}-3xy\)
Tính, biết x+y=2
\(A=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
Tính:
\(A=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
biết x+y=2
Tính gtri của mỗi đa thức sau , biết : x+y-2=0
a) N = x^3 +x^2y-2x^2-xy^2 +2xy+2y+2x-2
b) P=x^4+2x^3y-2x^3+x^2y^2 -2x^2y-x(x+y)+2x+3
mọi người giúp mk nha !!!