cho x,y,z là các số thực dương thảo mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=6\)= 6 .Tìm GTNN của biểu thức
M = \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Cho x, y là các số thực không âm và thỏa mãn điều kiện \(x^3+y^3+xy=x^2+y^2\). Tìm GTNN và GTLN của
\(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\)
1.Cho x,y,z khác 0 thõa mãn x+y+z=xyz và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\sqrt{3}\)
Tính P= \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
1)Cho x+y+z=1
Tìm GTLN của \(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)
2) Cho \(x+y+z\le\frac{3}{2}\)
Tìm GTNN của \(\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{z^2}}+\sqrt{z^2+\frac{1}{x^2}}\)
cho x,y,z>0 thỏa mãn:\(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2018\)
tìm Min:\(T=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
1) Cho x,y dương. Tìm GTNN của:
\(P=\frac{x^2+12}{x+y}+y\)
2) Cho a,b>0 thỏa a^2+b^2=1.
Tìm GTNN của \(A=\frac{1}{a}+\frac{1}{b}-\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\)
Cho \(\hept{\begin{cases}x,y,z>0\\xy+yz+zx=3\end{cases}}\)Tìm GTNN của \(A=\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\)
Cho x,y >0 và \(^{\left(x+y-1\right)^2}\)= xy .
Tìm GTNN của P = \(\frac{1}{x^2+y^2}+\frac{1}{xy}+\frac{\sqrt{xy}}{x+y}\)
Cho x,y>0 thỏa mãn: x+y=2. Tìm GTNN của \(C=\frac{1}{x^2+y^2}+\frac{2}{x+y}\)