a) ta có \(x+\dfrac{1}{x}=a\Leftrightarrow x^2+\dfrac{1}{x^2}+2=a^2\Leftrightarrow\dfrac{1}{x^2}+x^2=a^2-2\)
b)ta có \(x+\dfrac{1}{x}=a\Leftrightarrow x^3+3x^2.\dfrac{1}{x}+3x\dfrac{1}{x^2}+\dfrac{1}{x^3}=a^3\)
\(\Leftrightarrow x^3+\dfrac{1}{x^3}=a^3-3x-3\dfrac{1}{x}=a^3-3a\)
c)ta có \(x^2+\dfrac{1}{x^2}=a^2-2\Leftrightarrow x^4+2x^2\dfrac{1}{x^2}+\dfrac{1}{x^4}=a^4-4a+4\)
\(\Leftrightarrow x^4+\dfrac{1}{x^4}=a^4-4a+2\)
đ) ta có \(\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}=a^2-2\\x^3+\dfrac{1}{x^3}=a^3-3a\end{matrix}\right.\)
\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}\right)\left(x^3+\dfrac{1}{x^3}\right)=\left(a^2-2\right)\left(a^3-3a\right)\)
\(\Leftrightarrow x^5+\dfrac{1}{x}+x+\dfrac{1}{x^5}=a^5-3a^3-2a^3+6a\)
\(\Leftrightarrow x^5+a+\dfrac{1}{x^5}=a^5-5a^3+6a\)
\(\Leftrightarrow x^5+\dfrac{1}{x^5}=a^5-5a^3+5a\)