có \(x^2=y^2+4x^2\)
\(x^2-y^2=4z^2\)
Tiếp tục với \(\left(5x-3y+8z\right)\left(5x-3y-8z\right)+1\)
\(=\left(5x-3y\right)^2-\left(8x\right)^2+1\)
\(=25x^2-30xy+9y^2-64x^2+1\)
\(=25x^2-30xy+9y^2-16\cdot4x^2+1\)
Thay \(x^2-y^2=4z^2\)
\(\Rightarrow25x^2-30xy+9y^2-16\cdot4x^2+1\)
\(=25x^2-30xy+9y^2-16\cdot\left(x^2-y^2\right)+1\)
\(=25x^2-30xy+9y^2-16x^2+16y^2+1\)
\(=9x^2-30xy+25y^2+1\)
\(=\left(9x^2-30xy+25y^2\right)+1\)
\(=\left(3x-5y\right)^2+1\)
ta có \(\left(3x-5y\right)^2\ge0\)
\(\Rightarrow\left(3x-5y\right)^2+1>0\)
\(\Rightarrow\left(5x-3x+8z\right)\left(5x-3y-8z\right)+1\)luôn dương với mọi x;y