Cho x, y >0 thỏa mãn \(x^2+y^2\le1\). Tìm GTNN của \(A=\frac{1}{x^2+y^2}+\frac{2}{xy}\)
Cho x, y > 0 và thỏa mãn điều kiện \(x+y\le1\)
Tìm GTNN của K = \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
Bt: Cho x,y > 0 và x+y=1
Tìm gtnn của A= \(A=\frac{1}{x^2+y^2}+\frac{3}{4xy}\)
\(0< x,y,z\le1;x+y+z=2.\) tìm gtnn:
\(\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\)
Cho x,y >0 và \(x+\frac{1}{y}\le1\) Tìm GTNN của Q=\(\frac{x}{y}+\frac{y}{x}\)
Tìm GTNN của A = \(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\) với \(\hept{\begin{cases}x,y>0\\x+y\le1\end{cases}}\)
cho 2 số dương x,y thỏa măn \(x+y\le1\)
Tìm GTNN của BT \(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}\)
Cho x,y là các số thực dương thỏa mãn điều kiện:\(x+y\le1\).Tìm giá trị nhỏ nhất của biểu thức \(K=4\cdot x\cdot y+\frac{1}{x^2+y^2}+\frac{2}{x\cdot y}\)
Tìm n sao cho \(n^2+3^n\)là số cp
Cho x,y>0 và \(x^2y+x+1\le y\).Tìm GTNN của \(M=\frac{xy}{\left(x+y\right)^2}\)
Cho \(0< x\le1,0< y\le1\)và \(x+y=3xy\)
Tìm GTLN, GTNN của \(M=x^2+y^2-4xy\)