9x2 + y2 + z2 - 36x - 16y + 10z = - 125
\(\Leftrightarrow\)9x2 - 36x + 36 + y2 - 16y + 64 + z2 + 10z + 25 = 0
\(\Leftrightarrow\) ( 3x - 6 )2 + ( y - 8 )2 + ( z + 5 )2 = 0
Từ đó suy ra x, y, z
9x2 + y2 + z2 - 36x - 16y + 10z = - 125
\(\Leftrightarrow\)9x2 - 36x + 36 + y2 - 16y + 64 + z2 + 10z + 25 = 0
\(\Leftrightarrow\) ( 3x - 6 )2 + ( y - 8 )2 + ( z + 5 )2 = 0
Từ đó suy ra x, y, z
Cho x, y, z thỏa mãn 9x2 + y2 - 36x - 16y + 10z = -125.Vậy xy + yz + xz = ?
cho x,y,z thoản mãn: 9x2+y2+z2-36x-16y+10z= -125
Tính xy+yz+xz=?
cho 3 số x ,y,z thỏa mãn điều kiện 4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z=-34
Tisng gtbt Q = ( x-4)^2014+(y-4)^2014+(z-4)^2014
cho x,y,z là các số dương thỏa mãn xy+yz+zx=\(\dfrac{9}{4}\)
Tìm giá trị nhỏ nhất của biểu thức P=\(x^2+14y^2+10z^2-4\sqrt{2y}\)
Cho x,y,z>0 thỏa mãn 1/x+1/y+1/z=2015. Tìm GTLN của (x+y)/(x^2+y^2) + (y+z)/(y^2+z^2) + (z+x)/(z^2+x^2)
cho ba số thực x,y,z thỏa mãn xy+yz+zx=xyz. tìm giá trị nhỏ nhất của biểu thức H=\(\dfrac{x^2}{9z+zx^2}\)+\(\dfrac{y^2}{9x+xy^2}\)+\(\dfrac{z^2}{9y+yz^2}\)
Tìm x,y,z thỏa mãn: 9x^2 + y^2 +2z^2 - 18x + 4z - 6y + 20 = 0
Tìm tất cả các số nguyên dương x,y,z thỏa mãn đồng thời các điều kiện:
x+y+z>11 và 8x+9y+10z=100
cho x,y,z>0 thỏa mãn x+y<=z. tìm gtnn của: M=(x^2+y^2+z^2)(1/x^2+1/y^2+1/z^2)