cho x,y thõa mãn16x2-9y2\(\ge\)144 .chứng minh rằng |2x-y+1|\(\ge\)\(2\sqrt{5}-1\)
Cho x;y là 2 số thực dương thỏa mãn x2+y2=2
Chứng minh rằng \(\frac{x^3}{y^2}+\frac{9y^2}{x+2y} \geq 4\)
Cho x,y,z thỏa mãn x+y+z=\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\). Chứng minh rằng
\(\frac{1}{\left(2xy+yz+zx\right)^2}+\frac{1}{\left(2yz+zx+xy\right)^2}+\frac{1}{\left(2xz+xy+yz\right)^2}\le\frac{3}{16x^2y^2z^2}\)
Cho các số thực dương x,y thỏa mãn x+y=2.Chứng minh rằng x/(1+y^2)+y/(1+x^2)>=1
cho x,y thỏa mãn điều kiện: x^2+y^2=1 chứng minh rằng: \(-5\le3x+4y\le5\)
Cho x, y, z thỏa mãn x+y+z=6. Chứng minh rằng \(\frac{x}{x^2+5}+\frac{y}{y^2+5}+\frac{z}{z^2+5}\le\frac{2}{3}\)
Cho hai số x,y thỏa mãn : \(^{x^2+4y^2=1}\). Chứng minh rằng \(\left|x-y\right|\le\frac{\sqrt{5}}{2}\)
cho x,y,z>0 thỏa mãn xyz=1. chứng minh rằng 1/x²+1 + 1/y²+1 + 1/z²+1 >=3/2
Bài 1: Cho a, b thỏa mãn ab > 2020a + 2021b
Chứng minh rằng: a+b > \(\left(\sqrt{2020}+\sqrt{2021}\right)^2\)
Bài 2: Tìm x,y thỏa mãn \(\sqrt{x-3}+\sqrt{5-x}=y^2+2\sqrt{2019}.y+2021\)