cho x, y là các số nguyên dương thỏa mãn x^2−12=y^2−13 .chứng minh rằng x^2 -y^2 chia hết cho 40
cho x, y là các số nguyên dương thỏa mãn \(\frac{x^2-1}{2}=\frac{y^2-1}{3}\) .chứng minh rằng x2 -y2 chia hết cho 40
cho x, y là các số nguyên dương thỏa mãn (x^2-1)/2 = (y^2-1)/3 .Chứng minh x^2 -y^2 chia hết cho 40
Cho a,b là các số nguyên dương thỏa mãn p=a^2+b^2 là số nguyên tố và p-5 chia hết cho 8 . Giả sử x,y là các số nguyên thỏa mãn ax^2-by^2 chia hết cho p. Chứng minh rằng cả 2 số x,y chia hết cho p
Cho a,b là các số nguyên dương thỏa mãn p=a^2+b^2 là số nguyên tố và p-5 chia hết cho 8 . Giả sử x,y là các số nguyên thỏa mãn ax^2-by^2 chia hết cho p. Chứng minh rằng cả 2 số x,y chia hết cho p
cho 2 số nguyên dương x,y và x >1 và thỏa mãn điều kiện \(2y^2-1=y^{15}\). Chứng minh x chia hết cho 5
Đề 1:
Câu 2.
c) Cho hai số nguyên dương x, y thỏa mãn \(x^2-4y+1\) chia hết cho \(\left(x-2y\right)\left(2y-1\right)\).
Chứng minh rằng: | x - 2y | là số chính phương.
cho x, y là các số nguyên dương thỏa mãn x^2−12 =y^2−13 .chứng minh rằng x^2 -y^2 chia hết cho 4
cho x,y nguyên dương thỏa mãn \(\frac{x^2-1}{2}=\frac{y^2-1}{3}\).Chứng minh rằng \(x^2-y^2⋮40\)
cho x,y là các số nguyên sao cho x^2-2xy-y và xy-2y^2-x đều chia hết cho 5 . Chứng minh rằng 2x^2+y^2+2x+y cũng chia hết cho 5