\(S=\dfrac{\left(x+y\right)^2}{x^2+y^2}+\dfrac{\left(x+y\right)^2}{xy}\)
\(=\dfrac{x^2+y^2+2xy}{x^2+y^2}+\dfrac{2xy+x^2+y^2}{xy}\)
\(=1+\dfrac{2xy}{x^2+y^2}+2+\dfrac{x^2+y^2}{xy}\)
\(=3+\left(\dfrac{2xy}{x^2+y^2}+\dfrac{x^2+y^2}{2xy}\right)+\dfrac{x^2+y^2}{2xy}\)
Theo BĐT cô - si ta có :
\(\dfrac{2xy}{x^2+y^2}+\dfrac{x^2+y^2}{2xy}\ge2\sqrt{\dfrac{2xy\left(x^2+y^2\right)}{\left(x^2+y^2\right)2xy}}=2\)
\(x^2+y^2\ge2xy\) \(\Rightarrow\) \(\dfrac{x^2+y^2}{2xy}\ge\dfrac{2xy}{2xy}=1\)
Do đó \(S\ge3+2+1=6\)
Vậy GTNN của \(S=6\) . Dấu \("="\) xảy ra khi \(a=b\)