\(x+y\le3\Rightarrow x\le3-y\)
Đặt \(P=xy+y\Rightarrow P\le\left(3-y\right)y+y=-y^2+4y=4-\left(y-2\right)^2\le4\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)
\(x+y\le3\Rightarrow x\le3-y\)
Đặt \(P=xy+y\Rightarrow P\le\left(3-y\right)y+y=-y^2+4y=4-\left(y-2\right)^2\le4\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)
Cho 3 số thực x, y, z thỏa mãn \(\left|x-1\right|\le3;\left|y-2\right|\le670;\left|2\left(z+x-1\right)+y\right|\le6\)
Chứng minh rằng \(\left|xy+2z\right|\le2016\)
Cho 3 số thực x; y; z thỏa: \(\left|x-1\right|\le3\) ; \(\left|y-2\right|\le670\) ; \(\left|2\left(z+x-1\right)+y\right|\le6\)
Chứng minh rằng \(\left|xy+2z\right|\le2016\)
Cho x,y,z,t >0 thoã mãn: xy+4zt+2yz+2xt=9
Chứng minh: \(\sqrt{xy}+2\sqrt{zt}\le3\)
Cho x,y>0 thỏa x+y=1
Chứng minh 1/xy+2/x^2+y^2>=8
Cho các số thực dương $x,y,z$ thỏa mãn $x+y+z=1$. Chứng minh rằng:
\(\dfrac{x}{x+\sqrt{x+yz}}+\dfrac{y}{y+\sqrt{y+xz}}+\dfrac{z}{z+\sqrt{z+xy}}\le1\)
a) Cho x, y \(\ge\)0 thỏa mãn \(x^2+y^2\le2\). Tìm Min của \(M=\dfrac{1}{1+x}+\dfrac{1}{1+y}\)
b) Cho x, y, z > 0 thỏa mãn x + y + z = 4. Chứng minh rằng: \(\dfrac{1}{xy}+\dfrac{1}{yz}\ge1\)
Cho x,y,z>0 thỏa mãn xy+yz+zx=1. Chứng minh \(\frac{x}{x^2-yz+3}+\frac{y}{y^2-zx+3}+\frac{z}{z^2-xy+3}\ge\frac{1}{x+y+z}\)
5. Cho các số thực dương x, y và z thỏa mãn x+y+z+=1. Chứng minh rằng x/(x+yz)+y/(y+zx)+z/(z+xy)=<9/4
Cho x,y là các số dương thỏa mãn \(x+y\le1\)
Chứng minh rằng \(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge4\)