Cho x và y là các số dương thỏa mãn x y 2Chứng minh rằng xy<1
Cho x,y,z thoã mãn (z-1)x-y=1 và x+2y=2
Chứng minh rằng \(\left(2x-y\right)\left(z^2-z+1\right)\)=7 tìm tất cả các số nguyên thoã mãn phương trình trên
Cho x,y,z là các số thực dương thỏa mãn điều kiện xy+yz+xz=12. Chứng minh rằng:
\(\sqrt[x]{\dfrac{\left(12+y^2\right)\left(12+z^2\right)}{12+x^2}}\)+ \(\sqrt[y]{\dfrac{\left(12+x^2\right)\left(12+z^2\right)}{12+y^2}}\)+ \(\sqrt[z]{\dfrac{\left(12+x^2\right)\left(12+y^2\right)}{12+z^2}}\)
Cho x,y là các số thực dương thỏa mãn x+y=2 và hằng số k \(k\in Z^+.CMR:x^ky^k\left(x^k+y^k\right)\le2\).Hình như dùng quy nạp thì phải
Cho x,y là các số thực dương thỏa mãn x+y=2 và hằng số k \(k\in Z^+.CMR:x^ky^k\left(x^k+y^k\right)\le2\).Hình như dùng quy nạp thì phải
Cho x, y, z là các số thực dương thỏa mãn \(x\le2\left(y+z\right)\). Tìm giá trị lớn nhất của biểu thức:
\(A=\frac{x}{y^2+z^2}-\frac{1}{\left(x+y+z\right)^3}\)
1. Cho a,b,c là các số dương a+b+c=1. Tìm GTLN của P=\(\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\)
2. Cho x, y là các số dương thỏa mãn x+y=2. Chứng minh
\(x^3y^3\left(x^3+y^3\right)\le2\)
cho x,y là các số nguyên dương thỏa mãn x+y=2017. Tìm Min và Max
\(P=x\left(x^2+y\right)+y\left(y^2+x\right)\)
1) Cho x,y,z>0 thoả mãn : xyz<=1. Chứng minh rằng: \(\frac{x\left(1-y^3\right)}{y^3}\)+ \(\frac{y\left(1-z^3\right)}{z^3}\)+\(\frac{z\left(1-x^3\right)}{x^3}\)>=0
2) Cho x, y, z là các số thực dương thỏa mãn x ≥ z. CMR: xz /(y^2 + yz) + y^2 / (xz + yz) + (x + 2z)/(x + z) ≥ 5/2