a) \(\Delta\)OAB\(\sim\)\(\Delta\)OA'B' (g - g)
\(\Rightarrow\) \(\dfrac{OA}{OA'}=\dfrac{AB}{A'B'}\)
\(\Delta\)IOF\(\sim\)\(\Delta\)B'A'F (g - g) \(\Rightarrow\) \(\dfrac{OI}{A'B'}=\dfrac{OF}{A'F}\) mà OI = AB (hình chữ nhật) \(\Rightarrow\) \(\dfrac{OA}{OA'}=\dfrac{OF}{A'F}\) \(\Leftrightarrow\) \(\dfrac{OA}{OA'}=\dfrac{OF}{OF-OA'}\) \(\Leftrightarrow\) OA.(OF - OA') = OA'.OF \(\Leftrightarrow\) 2,5.(4 - OA') = 4OA' \(\Leftrightarrow\) 10 - 2,5OA' = 4OA' \(\Leftrightarrow\) 6,5OA' = 10 \(\Leftrightarrow\) OA' = \(\dfrac{20}{13}\) \(\approx\) 1,54 (cm) b) Ta có: \(\dfrac{OA}{OA'}=\dfrac{AB}{A'B'}\) ( \(\Delta\)OAB\(\sim\)\(\Delta\)OA'B') \(\Rightarrow\) OA.A'B' = OA'.AB \(\Leftrightarrow\) 2,5.A'B' = \(\dfrac{20}{13}\).3 \(\Leftrightarrow\) 2,5.A'B' = \(\dfrac{60}{13}\) \(\Leftrightarrow\) A'B' = \(\dfrac{24}{13}\) \(\approx\) 1,85 (cm)