Cho tứ giác ABCD nội tiếp nửa đường tròn (O) đường kính AD, hai đường chéo AC và BD cắt nhau tại H. Gọi E là chân đường vuông góc kẻ từ H đến AD.
1. CH/m các tứ giác ABHE và DCHE nội tiếp.
2. C/m EH là đường phân giác góc BEC.
3. Gọi M là giao điểm của hai tia AB và DC chứng minh 3 điểm M,H,E thẳng hàng.
cho tam giác đều nội tiếp đường tròn (o;r). đường thẳng vuông góc với ac tại a cắt (o) tại d, cắt tiếp tuyến của đường tròn (o) tại e . gọi m là trung điểm của ce và f của ac và bd .a) chứng minh :am là tiếp tuyến của đường tròn (o) b) tứ giác amcb là hình gì? vì sao? c) chứng minh: bc//ef e) chứng minh: c,d,e,f cùng thuộc một đường tròn f) tính cf,de theo r
Cho đường tròn ( O ; R ) có 2 đường kính AB , CD vuông góc nhau . Gọi M là điểm thuộc cung nhỏ AC , MB cắt CD tại E , MD cắt AB tại F. a ) Chứng minh tứ giác OFMC nội tiếp . b ) Tính diện tích hình quạt tròn OAC theo R. c ) Chứng minh BE.BM=2R2. d ) AC cắt MD tại G. Chứng minh GE//AB .
Cho tam giác ABC vuông tại A ( AB <AC) vẽ đường tròn (O) đường kính AC , đường tròn (O) cắt BC tại D .Vẽ tiếp tuyến BE của (o) ( E là tiếp điểm) .BO cắt AE tại H
a) Chứng Minh : Tứ giác OB vuông AE và BH.BO=BD.BC
Chứng minh DHOC là tứ giác nội tiếp và BHD=OHC
Giup mk ạ =((((
cho tam giác đều ABC nội tiếp đường tròn (O;R) đường thẳng vuông góc với AC cắt (O) tại D cắt tiếp tuyến qua C của đường tròn O tại E. Gọi M là trung điểm của CE và F là giao điểm của AC và BD a) CM:AM là tiếp tuyến đường tròn(O) b) tứ giác AMCB là hình gì? Vì sao? c) CM: C,O,D thẳng hàng d) CM: BD//EF e) CM: B,D,C,F thuộc 1 đường tròn
Câu 1 . Từ điểm A nằm bên ngoài đường tròn (o) về hai tiếp tuyến AB,AC lần lượt tại B,C của (o) a.chứng minh tứ giác ABOC nội tiếp đường tròn b.vẽ đường kính BD,CE của (o) , gọi I là giao điểm của AO và BC ,gọi F là giao điểm của đường thẳng DI và (o) , với F khác (o) Chứng minh ba điểm A,F,E thẳng hàng c.Chứng minh OF là tiếp tuyến của đường tròn ngoại tiếp tam giác AIF
Cho tam giác MAB vuông tại M ( MB<MA), kẻ MH vuông góc với AB( H thuộc AB). Đường tròn tâm O đường kính MH cắt MA và MB lần lượt tại E và F( E,F khác M). a) Chứng minh tứ giác AEFB nội tiếp b) Đường thẳng EF cắt đường tròn tâm (I) ngoại tiếp tam giác MAB tại P và Q(P thuộc cung MB). Chứng minh tam giác MPQ cân c) Gọi D là giao điểm thứ 2 của (O) với (I). Đường thẳng EF cắt đường thẳng AB tại K. Chứng minh ba điểm M,D,K thẳng hàng
Cho tam giác ABC vuông tại A( AB < AC) nội tiếp đường tròn (O) có đường kính BC. Kẻ dây AD vuông góc với BC. Gọi E là giao điểm của DB và CA. Qua E kẻ đường thẳng vuông góc với BC, cắt BC ở H, cắt AB ở F. Chứng minh rằng :
a) Tam giác EBF là tam giác cân
b) Tam giác HAF là tam giác cân
c) HA là tiếp tuyến của đường tròn (O)