Cho tứ giác MNPQ, gọi A, B, C, D lần lượt là trung điểm của MN, NP, PQ, QM. Chứng minh tứ giác ABCD là hình bình hành.
Cho tứ giác MNPQ .Gọi E,F,G,H lần lượt là trung điểm của các cạnh MN,NP,PQ,QM. Chứng minh tứ giác EFGH là hình bình hành
Cho hình bình hành MNPQ có NP = 2 MN. Gọi E, F thứ tự là trung điểm của NP và MQ. Gọi G là giao điểm của MF với NE, H là giao điểm của FQ và PE, K là giao điểm của tia NE với tia NQ a) Chứng minh tứ giác NEQK là hình thang b) Tứ giác GFHE là hình gì? vì sao ? c) Hình bình hành MNPQ có thêm điều kiện gì để GFHE là hình vuông ?
Cho tứ giác MNPQ có MN= NP cho biết MP là tia phân giác của góc M. Chứng minh MNPQ là hình thang
Cho tứ giác MNPQ. Gọi E,F,G,H lần lượt là trung điểm của các cạnh MN, NP, PQ, QM. Chứng minh: EFGH là hình bình hành
Cho tứ giác MNPQ có E, F, G, H lần lượt là trung điểm của các cạnh MN,NP.PQ.PM.
a) Chứng Minh rằng EFGH là hình bình hành
b) Hai đường chéo của tứ giác MNPQ phải có điều kiện gid thì tứ giác EFGH là hình thang. Vẽ hình minh họa.
Cho tứ giác ABCD.Gọi M,N,P,Q lần lượt là trung điểm của các cạnh AB,BC,CD và DA
a, Chứng minh tứ giác MNPQ là hình bình hành
b, Cho AC vuông góc với BD. Chứng minh tứ giác MNPQ là hình chữ nhật
c, Tứ giác ABCD cần có điều kiện gì thì MNPQ là hình vuông
cho tứ giác MNPQ, điểm A,B,C,D lần lượt là trung điểm của các cạnh MN,NP,PQ, QM. CMR tứ giác ABCD là hình bình hành
Cho hình thang MNPQ ( MN//PQ, MN,PQ ). Gọi A, B, C, D lần lượt là trung điểm của MN, NP, PQ, QM
1. CMR: tứ giác ABCD là hình bình hành
2. Giả sử MQ vuông góc với NP
a) CMR: tứ giác ABCD là hình chữ nhật
b) Cho MQ= 12cm, NP= 16cm, tính độ dài AC