Ta có \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)(tổng 4 góc của tứ giác)
mà \(\widehat{A}=\widehat{B}=\widehat{C}\)
=> \(3\widehat{A}+120^o=360^o\)
\(3\widehat{A}=360^o-^{ }120^o\)
\(3\widehat{A}=240^o\)
\(\widehat{A}=80^o\)
Vì \(\widehat{A}=\widehat{B}=\widehat{C}\) nên\(\widehat{A}=\widehat{B}=\widehat{C}\)\(=80^o\)
\(=>\angle\left(A\right)+\angle\left(B\right)+\angle\left(C\right)=360-\angle\left(D\right)=360-120=240^o\)
\(=>3\angle\left(A\right)=240=>\angle\left(A\right)=\angle\left(B\right)=\angle\left(C\right)=80^o\)