Cho tam giác ABC vuông tại A (AB<AC), đường cao AH
a) CM tam giác ABC đồng dạng tam giác HBA. Từ đó suy ra AB^2=BH.BC
b) Gọi D là điểm thuộc HC. Đường vuông góc với BC cắt AC tại E. CM góc ADC= góc BEC
c) CM CH/AC=DA/EB
giúp mik vs mik cần gấp ạ
cho tam giác ABC có H là trực tâm, Các đường thẳng vuông góc với AB tại B và vuông góc với AC tại C cắt nhau ở D
a, chứng minh tứ giác BDCH là hình bình hành
b, Tính góc BDC, biết góc BAC=60o
help me!!!
cho hình chữ nhật ABCD. AB=30cm, AD=40cm. Trên AD lấy điểm F sao cho BF=BC, đường trung trực của CF cates DC tại E. EF cắt AB tại P a) Chứng minh tam giác PAF đồng dạng tam giác FAB b) Tính độ dài PB c) Chứng minh góc CPB = góc DBC d) Chứng minh PC_|_BD
Cho tam giác ABC vuông tại A , đường cao AH , I là trung điểm của AC , IF vuông góc với BC ( F thuộc BC ) , CE vuông góc với AC ( E là giao điểm của CE với tia IF ) . G, K lần lượt là giao điểm của AH, AE với BI .CM :
a, Tam giác IHE = Tam giác ICE , tính góc IHE
b, Tam giác IHE đồng dạng với tam giác BHA ; tam giác BHI đồng dạng với tam giác AHE
c, AE vuông góc với BI
cho tam giác ABC,từ B kẻ tia Bx cắt AC tại M. sao cho góc ABM = góc ACB. chứng minh a) tam giác ABM đồng dạng với tam giác ACB. b)tính AB biết AM=2 cm,CM=2,5 cm
Cho tam giác ABC vuông tại A, đường cao AH, kẻ HM vuông góc với AB tại M . HN vuông góc với AC tại N
a) Cm ; tứ giác AMHN là hình chữ nhật
b) Cm : tam giác ABH đồng dạng với tam giác CAH
c) Tính MN
Cho \(\Delta\)ABC vuông tại A,Ah là đường cao,Bh=4cm,Ch=9cm.Gọi D,E lần lượt là hình chiếu của H trên Ab,Ac
1) Tính dộ dài DE
2)gọi I là tđ của BC,CM:AI vuông góc với DE
3) CM: góc ADE = góc ACB và góc AED= góc ABC
4) CM: \(AC^2\)=CH.CB
5) CM: AC.BD+AB.CE=AH.BC
Cho tam giác ABC vuông tại A, có AB=6cm, AC=8cm và đường cao AH a. Cm tam giác ABC ~ tam giác AHB b. Tính BC,HB c. Qua B vẽ đường thẳng d vuông góc với AC, tia phân giác của góc BAC cắt BC tại M và cắt đường thẳng d tại N. Cm AB/AC= MN/AM
Cho tam giác ABC cân tại A. M là trung điểm BC. Các điểm D, E lần lượt thuộc các cạnh AB, AC sao cho góc CME = góc BDM. Chứng minh:
a, \(BD.CE=BM^2\).
b, Tam giác MDE\(\approx\)tam giác BDM.
c, DM là phân giác góc BDE.