Câu 1.
a) Cho tập A,B lần lượt là tập xác định của hàm số f(x) = \(\sqrt{6-x}\) và g(x) = \(\dfrac{3}{2x+1}\). Xác định các tập A∩B, A∪B, A∖B, CRA.
b) Cho tập hợp C=[−3;8] và D=[m−6;m+3). Với giá trị nào của m thì C∩D là một đoạn thẳng có độ dài bằng 4.
Cho 2 tập hợp \(M=\left\{x\in R|x\le4\right\}\)và \(N=[m+1;10)\), với m là tham số. Tìm giá trị của m để M giao N là một đoạn có độ dài bằng 10.
Cho đường tròn (C): x 2 + y 2 - 6 x + 8 y - 24 = 0 và đường thẳng ∆ : x + y – m = 0. Để đường thẳng ∆ cắt (C) theo dây cung AB có độ dài bằng 10 thì giá trị của m là:
A. m = 1 ± 4 3
B. m = - 1 ± 4 3
C. m = - 1 ± 2 6
D. Không tồn tại giá trị của m
Cho hàm số y = f(x) với tập xác định D. Trong các phát biểu sau đây phát biểu nào đúng?
A. Giá trị lớn nhất của hàm số đã cho là số lớn hơn mọi giá trị của hàm số.
B. Nếu f(x) ≤ M, ∀x ∈ D thì M là giá trị lớn nhất của hàm số y = f(x).
C. Số M = f( x 0 ) trong đó x 0 ∈ D là giá trị lớn nhất của hàm số y = f(x) nếu M > f(x), ∀x ∈ D
D. Nếu tồn tại x 0 ∈ D sao cho M = f( x 0 ) và M ≥ f(x),∀x ∈ D thì M là giá trị lớn nhất của hàm số đã cho.
Trong phương vuông góc với Tọa độ Oxy, cho parabol (P): y = x² - 4mx + 3m² + 1, điểm A (0;3m) và đường thẳng (d): y = 2x + 3m-2 với m là tham số. Giả sử giao điểm của (d) và (P) là hai điểm M và N thì diện tích tam giác AMN bằng 4. Tìm giá trị của m
Cho đường thẳng d:(9m2-4) x+(n2-9) y=(n-3 )(3m+2). Với giá trị nào của m và n thì phương trình đã cho là đường thẳng song song với trục Ox?
A.
B.
C.
D.
Cho hàm số y= 2x + m - 3. Tổng các giá trị của tham số m để đồ thị hàm số cùng với hai trục tọa độ tạo thành một tam giác có diện tích bằng 9/4
là
A. 6 . B. 8 . C. -6 . D. 5.
Câu 1: Cho 2 điểm A,B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức \(\left|2.vectoMA+vectoMB\right|=\left|vectoMA+2.vectoMB\right|\)là:
A. đường trung trực của đoạn AB
B. đường tròn đường kính AB
C. đường trung trực đoạn thẳng IA
D. đường tròn tâm A, bán kính AB
Câu 2: cho tam giác ABC đều cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng thức \(\left|3.vectoMA+3.vectoMB+4.vectoMC\right|=\left|vectoMB-vectoMA\right|\)là đường tròn cố định có bán kính R. Tính bán kính R theo a.
A. R = a/3
B. R = a/9
C. R = a/2
D. R = a/6
Câu 3: Cho hình chữ nhật ABCD và số thực K>0. Tập hợp các điểm M thỏa mãn đẳng thức \(\left|vectoMA+vectoMB+vectoMC+vectoMD\right|=k\)là:
A. một đoạn thẳng
B. một đường thẳng
C. một đường tròn
D. một điểm
Câu 4:Cho tam giác ABC. Có bao nhiêu điểm M thỏa mãn \(\left|vectoMA+vectoMB+vectoMC\right|=3\)?
A.1
B.2
C.3
D. vô số
Cho đường tròn (C): x 2 + y 2 − 6 x + 8 y − 24 = 0 và đường thẳng ∆: 4x + 3y – m = 0. Giá trị m để đường thẳng cắt đường tròn theo dây cung có độ dài bằng 10 là:
A. m = ± 5 6
B. m = ± 10 6
C. m = 2
D.Không tồn tại m