Lời giải:
$\tan (x+\frac{\pi}{2})-1=0\Leftrightarrow \tan (x+\frac{\pi}{2})=1$
$\Rightarrow x+\frac{\pi}{2}=\frac{\pi}{4}+k\pi$ với $k$ nguyên
$\Rightarrow 2x=2k\pi-\frac{\pi}{2}$
Do đó:
\(\sin (2x-\frac{\pi}{6})=\sin (2k\pi-\frac{\pi}{2}-\frac{\pi}{6})=-\sin (\frac{\pi}{2}+\frac{\pi}{6})=\frac{-\sqrt{3}}{2}\)