Cho tam giác nhọn ABC. Gọi H là trực tâm của tam giác, M là trung điểm của BC. Gọi D là điểm đối xứng của H qua M.
a/ Chứng minh tứ giác BHCD là hình bình hành.
b/ Chứng minh các tam giác ABD, ACD vuông tại B, C.
c/ Gọi I là trung điểm của AD. Chứng minh rằng: IA = IB = IC = ID.
Giai giup minh với. mai 1 tiết rồi
a: Xét tứ giác BHCD có
M là trung điểm của BC
M là trung điểm của HD
Do đó: BHCD là hình bình hành
b: Ta có: BHCD là hình bình hành
=>BH//CD: CH//BD
=>CD\(\perp\)AC và BD\(\perp\)AB
=>ΔABD vuông tại B và ΔACD vuông tại C