a: Sửa đề: đường cao AD
Xét ΔBFC vuông tại F và ΔBDA vuông tại D có
\(\widehat{FBC}\) chung
Do đó: ΔBFC~ΔBDA
=>\(\dfrac{BF}{BD}=\dfrac{BC}{BA}\)
=>\(\dfrac{BF}{BC}=\dfrac{BD}{BA}\)
=>\(BF\cdot BA=BD\cdot BC\)
b: Xét ΔBFD và ΔBCA có
\(\dfrac{BF}{BC}=\dfrac{BD}{BA}\)
\(\widehat{FBD}\) chung
Do đó: ΔBFD~ΔBCA
c: Xét ΔCEB vuông tại E và ΔCDA vuông tại D có
\(\widehat{ECB}\) chung
Do đó: ΔCEB~ΔCDA
=>\(\dfrac{CE}{CD}=\dfrac{CB}{CA}\)
=>\(\dfrac{CE}{CB}=\dfrac{CD}{CA}\)
Xét ΔCED và ΔCBA có
\(\dfrac{CE}{CB}=\dfrac{CD}{CA}\)
\(\widehat{ECD}\) chung
Do đó: ΔCED~ΔCBA
d: Xét tứ giác BFHD có \(\widehat{BFH}+\widehat{BDH}=90^0+90^0=180^0\)
nên BFHD là tứ giác nội tiếp
Xét tứ giác CEHD có \(\widehat{CEH}+\widehat{CDH}=90^0+90^0=180^0\)
nên CEHD là tứ giác nội tiếp
Ta có: \(\widehat{FDH}=\widehat{FBH}\)(BFHD nội tiếp)
\(\widehat{EDH}=\widehat{ECH}\)(HECD nội tiếp)
mà \(\widehat{FBH}=\widehat{ECH}\left(=90^0-\widehat{BAC}\right)\)
nên \(\widehat{FDH}=\widehat{EDH}\)
=>DA là phân giác của góc FDE