a: \(NI=\sqrt{3.6\cdot6.4}=4.8\left(cm\right)\)
\(AI=\sqrt{3.6\cdot10}=6\left(cm\right)\)
b: AB*AN=AI^2
AM*AC=AI^2
Do đó: AB*AN=AM*AC
a: \(NI=\sqrt{3.6\cdot6.4}=4.8\left(cm\right)\)
\(AI=\sqrt{3.6\cdot10}=6\left(cm\right)\)
b: AB*AN=AI^2
AM*AC=AI^2
Do đó: AB*AN=AM*AC
Cho tam giác nhọn ABC đường cao AH, phân giác trong góc BAC cắt BC tại O, qua O dựng các đường thẳng OM vuông góc với AB, ON vuông góc với AC. 1, Chứng minh : 5 điểm A,M,H,O,N cùng nằm trên một đường tròn. 2, Chứng minh: HA là phân giác của MHN. 3, Đường thẳng qua O vuông góc với BC cắt MN tại K. Chứng minh : KN.AC=KM.AB 4, Gọi I là trung điểm của BC. Chứng minh: A,K,I thẳng hàng
Cho (O;R) đường kính BC và A nằm trên đường tròn sao cho AB < AC . H là hình chiếu của A trên BC . Gọi M và N lần lượt là hình chiếu của H lên AB ,AC, MN cắt BC tại D , AH cắt MN tại I . a, chứng minh tứ giác BMNC nội tiếp và DM.DN=DB.DC b, đường thẳng vuông góc MN tại I ,cắt đường thẳng qua O vuông góc BC tại Q . QH cắt (O) tại P . Tính độ dài IQ theo R và chứng minh 3 điểm D,A,P thẳng hàng
cho tam giác ABC vuông tại A (AB<AC) kẻ AH vuông góc với BC gọi D,E lần lượt là hình chiếu của H trên AB và AC a) biết AB=6cm, HC=6,4cm.tính BC,AC b) chứng minh: DE^3=BC.BD.CE c) đường thẳng qua B vuông góc với BC cắt HD tại M. đường thẳng qua C vuông góc với BC cắt HE tại N.chứng minh: M,A,N thẳng hàng
Cho tam giác ABC nhọn có 3 đường cao AD, BE, CF. Đường thẳng qua A vuông góc với AB, cắt BE tại M; đường thẳng qua A vuông góc với AC, cắt CF tại N. Gọi I là trung điểm của BC. CMR: AI vuông góc với MN.
Cho tam giác ABC nhọn (AB<AC), đường cao AD. Gọi M,N theo thứ tự là điểm đối xứng của D qua AB, AC. Đoạn thẳng MD cắt AB tại E, ND cắt AC tại F, MN cắt AB,AC lần lượt tại I, K.
Chứng minh : \(S_{AEF}=S_{ABC}.sin^2B.sin^2C\)
Cho tam giác ABC nhọn có 3 đường cao AD, BE, CF. Đường thẳng qua A vuông góc với AB, cắt BE tại M; đường thẳng qua A vuông góc với AC, cắt CF tại N. Gọi I là trung điểm BC. CMR: AI vuông góc với MN.
Ai giúp tớ với :)
Cho tam giác nhọn ABC có ba đường cao AD, BE, CF đồng quy tại H. Gọi M, N, P, Q lần lượt là hình chiếu vuông góc của D trên AB, AC, BE, CF.
a) Chứng minh EF // MN
b) Chứng minh MP + NQ = EF
c) Đường thẳng PQ cắt DE, DF lần lượt tại K, I và AD cắt EF, MN lần lượt tại G, O. Giả sử O là trung điểm MN. Khi đó tứ giác GIDK là hình gì?
cho tam giác nhọn ABC nội tiếp đường tròn (O). Gọi E là hình chiếu của B trên AC. Đường thẳng qua E song song với tiếp tuyến của đường tròn (O) tại A và cắt AB ở F.
a) Chứng minh rằng tứ giác BCEF nội tiếp
b)BE cắt CF ở I .Chứng minh rằng AI vuông góc với BC
Cho A nằm trên đường tròn (O) đường kính BC, phân giác của góc BAC cắt BC tại D và cắt đường tròn (O) tại M, AH là đường cao của tam giác ABC.
a) Chứng minh OM vuông góc BC và MB2= MA.MD
b) Phân giác của góc ABC cắt AH tại E; cắt AM tại I; cắt AC tại F và cắt (O) tại N, cm MA = MB = MC.
c) chứng minh EA.FA = EH.FC
d) Qua I kẻ IP vuông góc AB tại P, IP cắt BC tại K, chứng minh N, K, M thẳng hàng.
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn ( ) O . Gọi M là trung điểm của cạnh BC và N là điểm đối xứng của M qua O . Đường thẳng qua A vuông góc với AN cắt đường thẳng qua B vuông góc với BC tại D . Kẻ đường kính AE . Chứng minh rằng:
b) CD đi qua trung điểm của đường cao AH của tam giác ABC .