a: Xét ΔNMD vuông tại M và ΔNED vuông tại E có
ND chung
\(\widehat{MND}=\widehat{END}\)
Do đó; ΔNMD=ΔNED
b: Ta có: ΔNMD=ΔNED
=>NM=NE
c: Ta có: ΔNMD=ΔNED
=>DM=DE
mà DE<DP(ΔDEP vuông tại E)
nên DM<DP
a: Xét ΔNMD vuông tại M và ΔNED vuông tại E có
ND chung
\(\widehat{MND}=\widehat{END}\)
Do đó; ΔNMD=ΔNED
b: Ta có: ΔNMD=ΔNED
=>NM=NE
c: Ta có: ΔNMD=ΔNED
=>DM=DE
mà DE<DP(ΔDEP vuông tại E)
nên DM<DP
cho tam giac MNP vuông tại M( MN>MP). trên cạnh NP lấy điểm E sao cho NE = NM, qua E kẻ đừơng thăng vuông góc với NP cắt MP tại D
a) chứng minh tam giác MND = tam giác END và ND phân giác của MNP
b) trên tia đối của tia MN, lấy điểm F sao cho MF = DP chứng minh tam giác MDF= tam giác EDP
c) minh 3 điểm E , D , F thẳng hàng
d) chứng m ND vuông góc với CF
Cho tam giác MNP vuông góc tại M, MN = 4cm, góc N = 60o. Tia phân giác góc N cắt MP tại D. Kẻ DE vuông góc với NP tại E.
a) Chứng minh tam giác END = tam giác MND
b) Chứng minh tam giác MNE đều
c) Tính cạnh NP, MP
Cho tam giác MNP vuông tại M. Tia phân giác của góc MNP cắt MP ở D. Kẻ DE vuông góc với NP (E\(\in\)NP)
a) Chứng minh: tam giác MND = tam giác END
b) Chứng minh: ND là đường trung trực của ME
c)Gọi K là giao điểm của MN và DE. Nối P với F. Chứng minh rằng: tam giác MNP là tam giác cân và ND đi qua trung điểm của PF
d) So sánh :MD và DP
Cho tam giác MNP vuông góc tại M,có tia phân giác của góc.Cắt MP tại D.Kẻ DH vuông với NP tại H (H thuộc BC) a. Chứng minh rằng tâm giác MND=tam giác HND b. Gọi K là giao điểm của MN và HD.Chứng mình MK=HD c. Góc HDP=2góc MND
Cho tam giác MNP có MN=3cm MP= 4cm NP=5cm a, Chứng tỏ rằng tam giác MNP vuông tại M b, vẽ tia phân giác ND(D thuộc MP) từ D vẽ DE vuông góc với NP (E thuộc NP) chứng minh DM=DE c, ED cắt MN tại F chứng minh DE
CHO TAM GIÁC MNP VUÔNG TẠI N(NM<NP), TIA PHÂN GIÁC CỦA GÓC M CẮT CẠNH NP TẠI K.TRÊN MP LẤY ĐIỂM I SAO CHO MN=MI
A) CHỨNG MINH TAM GIÁC MNK = TAM GIÁC MIK. SUY RA TAM GIÁC NKI CÂN
B) TIA MN CẮT TIA IK TẠI E. CHỨNG MNH MK VUÔNG GÓC EP
1. Cho tam giác MNP cân tại M vẽ MH thuộc NP (H thuộc NP)
a) Chứng minh NH = PH
b) Cho MH = 4 cm; NH = 3 cm. Tính MN
2. Cho tam giác MNP vuông tại M, có góc N = 60o và MN = 5 cm. Tia phân giác của góc N cắt MP tại D. Kẻ DE vuông góc với PN tại E
a) Chứng minh: tam giác MNP = tam giác END
b) Chứng minh: tam giác MNE là tam giác đều
c) Tính độ dài cạnh PN
3. Cho tam giác MNP cân tại M, góc M = 30o; NP = 2 cm. Trên cạnh MP lấy điểm Q sao cho góc PNQ = 60o. Tính độ dài MQ
Mình cần gấp ạ, mong mọi người giải giúp ạ.
Cho tam giác MNP vuông tại M có MN = 6 cm NP = 10 cm, tia phân giác của góc N cắt MP tại D kẻ DE vuông góc với NP tại E
a,Tính MP
b,Chứng minh MD = ED
c,Gọi I là giao điểm của MN và DE Chứng minh ME song song với IP
Cho tam giác MNP vuông tại M. Tia phân giác của góc N cắt cạnh MP tại E. Kẻ EH vuông góc với NP tại H.
a, Chứng minh tam giác MNE= tam giác HNE
b, Cho NP=17cm; MN= 15cm. Tính MP
Các bạn giúp mik với mik cần gấp!
Cho tam giác MNP vuông tại M. Trên cạnh NP lấy điểm E sao cho NE=MN. Tia phân giác của góc N cắt MP ở D.
a) So sánh DM và DE, tính góc NED
b) Tia ED cắt tia đối của tia MN tại K. Chứng minh tam giác DMK= tam giác DEP
c) Chứng minh ND vuông góc với KP