O nằm trên trung trực của MN và PE
=>OM=ON; OP=OE
Xét ΔMOP và ΔNOE có
OM=ON
MP=NE
OP=OE
=>ΔMOP=ΔNOE
O nằm trên trung trực của MN và PE
=>OM=ON; OP=OE
Xét ΔMOP và ΔNOE có
OM=ON
MP=NE
OP=OE
=>ΔMOP=ΔNOE
cho tam gíac mnp có mn<mp lấy điểm e trên cạnh mp sao cho pe=mn đường trung trức ne cắt mp tại a a) so sánh tam giác amn và tam giác ape b)tam giác amp là tam giác gì chứng minh ma là tia phân giác nmp
Cho tam giác MNP nhọn có MN < MP. Trên cạnh MP lấy điểm B sao cho MB = MN. Lấy O là trung điểm của NB.
a)Chứng minh: tam giác MNP bằng tam giác MBO.
b)Kéo dài MO cắt NP tại A. Chứng minh: AN = AB.
c)Đường thẳng P song song với MP cắt MO kéo dài tại điểm H, cắt MN kéo dài tại điểm C. Chứng minh: MH vuông góc CP và MC = MP.
d)Chứng minh 3 điểm B, A, C thẳng hàng.
Cho tam giác MNP nhọn có MN < MP. Trên cạnh MP lấy điểm B sao cho MB = MN. Lấy O là trung điểm của NB.
a)Chứng minh: tam giác MNP bằng tam giác MBO.
b)Kéo dài MO cắt NP tại A. Chứng minh: AN = AB.
c)Đường thẳng P song song với MP cắt MO kéo dài tại điểm H, cắt MN kéo dài tại điểm C. Chứng minh: MH vuông góc CP và MC = MP.
d)Chứng minh 3 điểm B, A, C thẳng hàng.
Cho tam giác MNP nhọn có MN < MP. Trên cạnh MP lấy điểm B sao cho MB = MN. Lấy O là trung điểm của NB.
a) Chứng minh: tam giác MNP = tam giác MBO.
b)Kéo dài MO cắt NP tại A. Chứng minh: AN = AB. c)Đường thẳng P song song với MP cắt MO kéo dài tại điểm H, cắt MN kéo dài tại điểm
c) Chứng minh: MH vuông góc CP và MC = MP.
Cho tam giác MNP cân tại M. Trên cạnh MN lấy điểm K, trên cạnh MP lấy điểm D sao cho MK = DP. Đường trung trực của MP cắt đường trung trực của DK tại O. Chứng minh:
a) M K O ^ = P D O ^ ;
b) O thuộc đường trung trực của MN;
c) MO là tia phân giác của N M P ^ .
cho tam giac MNP vuông tại M( MN>MP). trên cạnh NP lấy điểm E sao cho NE = NM, qua E kẻ đừơng thăng vuông góc với NP cắt MP tại D
a) chứng minh tam giác MND = tam giác END và ND phân giác của MNP
b) trên tia đối của tia MN, lấy điểm F sao cho MF = DP chứng minh tam giác MDF= tam giác EDP
c) minh 3 điểm E , D , F thẳng hàng
d) chứng m ND vuông góc với CF
Cho tam giác MNP cân tại M . Lấy điểm D trên cạnh MN , điểm E trên cạnh MP sao cho ND=PE Bạn đã gửi a) Chứng minh tam giác NDP=PEN Bạn đã gửi b) Chứng minh tam giác MDP=MEN Bạn đã gửi c) Gọi K là giao điểm của NE và DP. Chứng minh tam giác KNP cân tại K d) Chứng minh MK là tia phân giác của góc NMP Bạn đã gửi e) Lấy H là trung điểm của NP. Chứng minh M ,K ,H là 3 điểm thẳng hàng Bạn đã gửi f) Chứng minh DE//N
giải bài toán tam giác MNP cân tại M trên cạnh MN lấy K trên cạnh MP lấy điểm D sao cho MK=DP đường trung trục của MP cắt đường trung trực của DK tại O C/m góc MKO=gócPDO;O thuộc đường trung trực của MN;MO là tia p/g của góc NMP
cho tam giác MNP có MN=MP, MI là đường trung tuyến.
a) tam giác MNP là tam giác gì?
b)chứng minh: tam giác MNI= tam giác MPI
c) chứng minh MI là dường trung trực của đoạn thẳng NP
d) cho MN=MP= 10cm, NP= 12cm. tính độ dài MI
e)kẻ IH vuông góc với MN, H thuộc MN. trên MH lấy điểm E, trên MH lấy điểm E, trên MP lấy điểm Fsao cho góc MEF bằng hai lần góc EIH. chứng minh rằng: EI là tia phân giác của góc HEF