Xét ΔMNP có
NQ,PR là các đường cao
NQ cắt PR tại S
Do đó: S là trực tâm của ΔMNP
=>MS\(\perp\)NP
Xét ΔMNP có
NQ,PR là các đường cao
NQ cắt PR tại S
Do đó: S là trực tâm của ΔMNP
=>MS\(\perp\)NP
Cho tam giác MNP có ba góc nhọn, các đường cao NQ, PR cắt nhau tại S.
a) Chứng minh M S ⊥ N P .
b) Cho M N P ^ = 45 ° . Tính S M R ^ .
Cho \(\Delta\)MNP có 3 góc nhọn,các đường cao NQ,PR cắt nhau tại S
a)Chứng minh MS\(\perp\)NP
b)Cho góc MNP=65 độ tính góc SMR
cho tam giác MNP nhọn có K là trung điểm của NP đường thẳng vuông góc với KM tại N cắt đường thẳng MK tại E trên tia KM láy H sao cho KH=KE
chứng minh PH vuông MN
Cho tam giác MNP cân tại M , vẽ MH vuông góc với NP
a ) Chứng minh : Tam giác MHN = Tam giác MHP
b ) Chứng minh MH là phân giác của tam giác MNP
c ) Tính MH nếu MN = 10 cm , NP = 12 cm
d ) Vẽ đường thẳng vuông góc với MN tại N và đường thẳng vuông góc với MP tại P , hai đường thẳng này cắt nhau tại K . Chứng minh M , K , H thẳng hàng .
cho tam giác MNP vuông tại M có MN = 4cm , MP =3cm
a, Tính NP và so sánh các góc trong tam giác MNP
b , Trên Tia đối của PM lấy A sao cho P là trung điểm của AM . Qua P dựng đường thẳng vuông góc với AM cắt AN tại C . Chứng minh tam giác CPM = tam giác CPA
c ,Chứng minh CM = CN
d , Gọi G là giao điểm của MC và NP. Tính NG
e ,Từ A kẻ đường thẳng vuông góc với đường thẳng NP tại D . Vẽ tia Nx là tia phân giác của góc MNP . Vẽ tia Ay là phân giác góc PaD . Tia Ay cắt các tia NP , Nx ,NM lần lượt tại E ,H ,K . Chứng minh tam giác NEK cân
cho tam giác MNP cân taih M có M=120 độ , NP=12cm . Đường vuông góc với MN tại M cắt NP tại Q . Tính NQ
Cho tam giác MNP nhọn có góc M= 50 độ, đường cao NK lấy điểm E thuộc đoạn MN sao cho góc MPE = 40 độ. Kéo dài NK cắt PE ở I . Chứng minh
a) góc MNK = góc MPE
b) MI vuông góc NP
c) cho tam giác MNP cân ở M. Tính các góc của tam giác MIP
cho tam giác MNP vuông tại M , có MN=MP . Gọi K là trung điểm của cảnh NP .
a) chứng minh tam giác MKN=MKP và MK vUông NP
b)từ B kẻ đường vuông góc với NP , nó cắt MN tại E . Chứng minh EP//MK
C) chứng minh PE=NP
cho tam giác mnp vuông tại m trên np lấy e sao cho ne=nm qua e kẻ kẻ đường thẳng vuông góc với np cắt mp ở i chứng minh tam giác mni=tam giác eni,c/m tam giác ime cân, so sánh im và ip,kẻ đường cao mk của tam giác mnp c/m me là tia p/g cua góc kmp , kẻ ph vuông góc với ni tại h cắt nm kéo dài ở f c/m E,I,F thẳng hàng