Cho tam giác ABC cân tại A nội tiếp (O,R). M là điểm di động trên cung nhỏ BC . D là giao điểm của AM và BC.
a, Chứng minh tam giác MBD đồng dạng với tam giác MAC
b, (MB+MC)/MA=BC/AB
c, Xác định vị trí của M để MA+MB+MC đạt giá trị lớn nhất
Cho tam giác ABC đều ngoại tiếp (O), M là một điểm bất kì trên cung nhỏ BC, AM giao BC tại D. Chứng minh rằng:
a, MA=MB+MC
b, MC là tiếp tuyến của đường tròn ngoại tiếp tam giác ADC
c, Khi điểm M di chuyển trên cung nhỏ BC thì tổng 2 bán kính của 2 đường tròn ngoại tiếp tam giác ABD và ACD không đổi
cho tam giác ABC đều nội tiếp đường tròn tâm O lấy M trên cung nhỏ BC trên dây AM lấy điểm D sao cho MD= MB
a) C/m tam giác MBD đều
b) C/m MB + MC = AM
c) C/m 4 điểm A, O, B, D thuộc 1 đường tròn
d) Xác định vị trí M trên cung BC nhỏ để MB+ MC lớn nhất.
Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O , đường kính AI điểm M tùy ý trên cung nhỏ AC(M khác A, M khác C) .Kẻ tia Mx là tia đối của tia MC .
1) Trên tia đối của tia MB lấy điểm D sao cho MD= MC, Gọi K là giao điểm thứ hai của DC với đường tròn tâm O . chứng minh rằng tứ giác MIKD là hình bình hành
3) Chứng minh rằng khi M di động trên cung nhỏ AC thì D di động trên cung tròn cố định
Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O , đường kính AI. Điểm M tùy ý trên cung nhỏ AC (M khác A, M khác C) . Kẻ tia Mx là tia đối của tia MC.
1) Cứng minh rằng MA là tia phân giác của tia BMx.
2) Trên tia đối của tia MB lấy điểm D sao cho MD - MC , gọi K là giao điểm thứ hai của dc với đường tròn tâm (O) . Chứng minh rằng tứ giác MIKD là hình bình hành.
3) Chứng minh rằng khi M di động trên cung nhỏ AC thì D di động trên cung tròn cố định.
Cho tam giác ABC cân tại A, nội tiếp đường tròn (O), tia AO cắt đường tròn (O) tại D. Lấy M trên cung nhỏ AB. Dây MD cắt dây BC tại I. Trên tai đối của MC lấy điểm E sao cho ME = MB. Chứng minh:
a) MD là phân giác của góc BMC
b) MI song song BE
c) Gọi giao điểm của đường tròn tâm D, bán kính DC với MC là k. Chứng minh rằng tứ giác DCKI nội tiếp
Cho tam giác ABC đều, nội tiếp (O). M là điểm thuộc cung nhỏ BC. Trên MA lấy điểm D sao cho MD=MB.CMR
a) Tam giác BMD là tam giác gì?
b) AM= MB+MC
c) AM cắt BC tại H. CM 1/BM+1/MC=1/MH
1. Cho đtron O và 2 dây AB=AC. Qua A vẽ một cát tuyến cắt dây BC ở D và cắt (O) ở E
Chứng minh : AB2 =AD .AC
2.Cho Tam giác đều ABC nội tiếp (O) và M là một điểm của cung nhỏ BC .Trên MA lấy điểm D sao cho MD = MB
a) Tam giác MBD là tam giác gì ?
b) Chứng minh :MA = MB +MC
Cho đường tròn (O;R) và hai đường kính AB và CD vuông góc với nhau. M là điểm bất kì trên cung nhỏ BC. AM cắt bán kính OC tại K
a) Chứng minh MKOB là tứ giác nội tiếp
b) Chứng minh AK.AM=AO.AB
c) Trên đoạn MA lấy điểm I sao cho IM=MB. Khi M di đổng trên cung nhỏ BC thì điểm I chạy trên đường nào?
GIÚP MÌNH CÂU C THÔI NHA!
Cho tam giác ABC cân tại A nội tiếp (O; R). M là điểm chuyển động trên cung BC không chứa A. D là giao điểm của MA và BC.
a) Chứng minh tam giác MBD đồng dạng tam giác MAC
b) MB+MC/MA = BC/AB
c) Xác định vị trí của M để MA+MB+MC lớn nhất