Bài 1: Cho ΔABC vuông tại A, đường cao AH, biết \(\frac{AB}{AC}=\frac{5}{6}\) và BC = 12cm. Tính BH và CH
Bài 2: Cho ΔCDE nhọn, đường cao Ch. Gọi M,N theo thứ tự là hình chiếu của H lên CD và CE. Chứng minh:
a) CD.CM = CE.CN
b) ΔCMN ∼ ΔCED
Cho tam giác ABC nhọn, đường cao AH. Gọi D,E lần lượt là hình chiếu của H lên AB AC
a/ Giả sử BH =6cm BD=3,6cm. Tính độ dài các cạnh AB,AD,AH,DH
b/ Chứng minh tam giác ADE đồng dạng với tam giác ACB
Cho tam giác ABC vuông tại A có AC>AB và đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC.
1) Chứng minh AD.AB = AE.AC và tam giác ADE đồng dạng với tam giác ACB.
2) Cho biết BH = 2cm, CH = 4,5cm. Tính:
a) Độ dài đoạn thẳng DE.
b) Số đo của góc ABC.
c) Diện tích tam giác ADE.
Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC tại H, biết BH = 3,6 ; CH = 6,4.
a) Hãy tính độ dài các đoạn thẳng AH,AB và tính số đo góc HCK.
b) Gọi M và N lần lượt là hình chiếu của H lên AB và AC.Chứng minh tam giác AMN đồng dạng với tam giác ACB.
c) Tính diện tích tứ giác BMNC.
mn giúp em vs ạ mai em nộp gấp !!
Cho tam giác ABC vuông tại B, đường cao BH . Cho biết AB cm AC cm 6 , 10 .
a) Tính độ dài các đoạn thẳng BC BH HA HC , , , .
b) Gọi M và N theo thứ tự là hình chiếu của H trên AB và BC. Chứng minh: BN BC BM BA . . .
Cho tam giác ABC vuông tại A có AB = 9cm, AC = 12cm, đường cao AH.
a) Tính BC, góc B, góc C (góc làm tròn đến phút)
b) Tính BH, AH
Gọi E, F là hình chiếu của H lần lượt lên cạnh AB, AC. Chứng minh tam giác ABC đồng dạng AFE
giúp em các cao thủ
Cho tam giác ABC vuông tại B , đường cao BH . Gọi M , N là hình chiếu của H trên AB , BC .
a) Viết các hệ thức lượng trong tam giác vuông AHB
b)Cho BC = 30cm , BH = 24cm ,Tính CH , AC , AH , AB .
c) Chứng minh : BN.BC + BM.BA = 2MN2
Cho tam giác ABC vuông tại A , đường cao AH . Gọi M,N lần lượt là hình chiếu của H lên AB, AC . Chứng minh rằng :
a) AM.AB=AN.AC
b) MB/NC=(AB/AC)^3
c) BC.MB.NC=AH^3
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H lên AB, AC.
a) Chứng minh: AE.AB = AF.AC và \(\widehat{AEF}=\widehat{ABC}\)
b) Đường trung tuyến AI của tam giác ABC cắt EF tại K. Chứng minh rằng \(cos^2B.sinB=\dfrac{KF}{BC}\)