Cho tam giác không vuông ABC (AB < AC), đường cao AH. Gọi E, F theo thứ tự là hình chiếu vuông góc của H trên AB và AC. Đường thằng È cắt đường thẳng BC tại D. Trên nửa mp bờ CD chứa A. Vẽ nửa đường tròn đường kính CD. Qua B vẽ đường thẳng vuông góc với CD cắt nửa đường tròn trên tại K.
a. CMR: BEFC là tứ giác nội tiếp.
b. CMR: tam giác DEK đồng dạng với tam giác DKF.
cho tam giác abc vuông tại c (ca>cd) nội tiếp đường tròn m o.Tiếp tuyến tại c của đường tròn o cắt đường thẳng ab tại d, đường thẳng qua d và vuông góc với ab cắt đường thẳng ac tại e, eb cắt đường tròn o tại f (f khác b)
giúp mình với huhuhuhuh
cho tam giác ABC vuông tại A (AB>AC). Trên cạnh AC lấy điểm M khác A và C. Vẽ đường tròn đường kính MC cắt BC tại E và cắt đường thẳng MB tại D (E khác C và D khác M)
a. C/m ABCD nội tiếp
b. C/m góc ABD = góc MED
c. Đường thẳng AD cắt đường tròn đường kính MC tại N. Đường thẳng MD cắt Cn tại K. MN cắt CD tại H. C/m KH//NE
cho tam giác ABC vuông tại A (AB>AC). Trên cạnh AC lấy điểm M khác A và C. Vẽ đường tròn đường kính MC cắt BC tại E và cắt đường thẳng MB tại D (E khác C và D khác M)
a. C/m ABCD nội tiếp
b. C/m góc ABD = góc MED
c. Đường thẳng AD cắt đường tròn đường kính MC tại N. Đường thẳng MD cắt Cn tại K. MN cắt CD tại H. C/m KH//NE
Cho tam giác ABC có ba góc nhọn nội tiếp (O;R) đường cao AH của tam giác cắt đường tròn tâm O tại D . Từ D vẽ đường thẳng song song với BC cắt đường tròn O tại E
a CMR O, A,E thẳng hàng
b, CMR BCED thang cân
c, Tính \(AB^2+AC^2+CD^2+BD^2\)
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O) và AB<AC. Các tiếp tuyến tại B và C của (O) cắt nhau tại D. Qua D kẻ đường thẳng song song với AB cắt BC,AC tại M,N.
1) Chứng minh: Tam giác ANB cân ?
2) Đường thẳng AD cắt đường tròn (O) tại I, BI cắt DM tại K. Trên đoạn BD lấy điểm P sao cho IP//DN. AP cắt BC tại Q. Gọi G là trung điểm DK. CMR: Ba điểm Q,I,G thẳng hàng ?
3) AD căt BC ở S. Gọi H là hình chiếu của B trên AD. CMR tâm đường tròn (HCS) thuộc 1 đường thẳng cố định ?
cho đường tròn tâm (O) đường kính A. Trên đường tròn tâm O lấy điểm C( C k trùng với A, B và CA>CB). Các tiếp tuyến của đường tròn tam O tại A, tại C cắt nhau ở đierm D, kẻ CH vuông góc với AB(H trực thuộc AB), DO cắt AC tại E.
a. CMR OECH nội tiếp
b. Đường thẳng CD cắt đường thẳng AB tại F. CM \(2\widehat{BCF}+\widehat{CFB}=90^o\)
c. BD cắt CH tại M. CMR EM//AB
Cho tam giác ABC nội tiếp đường tròn (O), D là 1 điểm trên cạnh BC ( D khác B và C). Gọi M,N lần lượt là trung điểm các cạnh AB,AC. Đường thẳng MN cắt (O) tại các điểm P,Q (P,Q lần lượt thuộc cung AB và cung AC). Đường tròn ngoại tiếp tam giác BDP cắt AB tại I (khác B). Các đường thẳng DI và AC cắt nhau tại K.
a) C/m: Tứ giác AIPK nội tiếp và \(\frac{PK}{PD}=\frac{QB}{QA}\).
b) Đường thẳng CP cắt đường tròn ngoại tiếp tam giác BDP tại G (khác P). Đường thẳng IG cắt đường thẳng BC tại E. Cmr khi D di chuyển trên BC thì \(\frac{CD}{CE}\)không đổi.
Cho tam giác ABC nội tiếp đường tròn (O). Tia phân giác trong của góc A cắt đường tròn (O) tại điểm M.
a) Đường phân giác ngoài của góc A cắt lại đường tròn (O) tại N. CM M, O, N thẳng hàng.
b) Giả sử đường phân giác góc ngoài cắt đường thẳng BC tại E . CM góc AMO = góc CEA
c) Trên cạnh AC lấy điểm D tùy ý ( khác A và C). Đường thẳng BD cắt đường tròn (O) tại điểm thứ hai F. Đường thẳng qua A vuông góc với AB và đường thẳng qua F vuông góc với FC cắt nhau tại P. Chứng tỏ rằng P, D, O thẳng hàng.