Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm, AD là tia phân giác của góc BAC (D ϵ BC)
a, Tính tỉ số DBDCDBDC và độ dài các đoạn thẳng BC, DB, DC
b, TỪ D kẻ DE vuông góc với AB tại E (E ϵ AB). Tính độ dài AE, DE và diện tích tứ giác AEDC
c, Gọi O là giao điểm của AD và CE. QUa O kẻ đường thằng song song với AC cắt BC và AB lần lượt tại M và N. Chứng minh rằng OM = ON
Cho tam giác ABC, điểm M di chuyển trên cạnh BC. Gọi I là trung điểm của AM. Điểm I di chuyển trên đường nào ?
Bài 2: Cho tam giác ABC, M di động trên BC. Qua M kẻ MD // AC. ME// AB
( D thuộc AB, E thuộc AC )
a) Tứ giác ADME là hình gì ?
b) Gọi O là giao điểm của AM và DE. Khi M di động trên BC thì O di động trên
đường nào?
Cho tam giác ABC, điểm M di chuyển trên BC, goi I la trung điểm của A. Điểm I di chuyển trên đường nào.
Cho đoạn thẳng AB, điểm M di chuyển trên đoạn thẳng ấy. Vẽ về một phía của AB các tam giác đều AMD, BME. Trung điểm I của DE di chuyển trên đường nào ?
Cho tam giác ABC vuông tại A. Lấy M là một điểm bất kì thuộc cạnh BC. Gọi MD là đường vuông góc kẻ từ M đến AB, ME là đường vuông góc kẻ từ M đến AC, O là trung điểm của DE
a) Chứng minh rằng ba điểm A, O, M thẳng hàng
b) Khi điểm M di chuyển trên cạnh BC thì điểm O di chuyển trên đường nào ?
c) Điểm M ở vị trí nào trên cạnh BC thì AM có độ dài nhỏ nhất ?
Cho tam giác ABC vuông cân ở A. Từ điểm H tùy ý trên cạnh BC, vẽ một đường thẳng vuông góc với BC,cắt các đường thẳng AB,AC lần lượt ở I và K. Gọi E là trung điểm của BI, F là trung điểm của CK.Tìm tập hợp các điểm O là trung điểm của EF khi H di động trên BC
Cho tam giác nhọn ABC có AM là đường trung tuyến. Trên cạnh AC lấy hai điểm D và E sao cho
AD = DE = EC. AM cắt BD tại I.
a) Chứng minh tứ giác BDEM là hình thang.
b) Chứng minh I là trung điểm của AM.
c) Chứng minh BI = 3DI.
d) Trên tia đối của CB lấy hai điểm P và Q sao cho CP = PQ = CM. Chứng minh ME, AP, DQ đồng quy
tại một điểm.