Xét tam giác ABC có:
\(\widehat{ABC}+\widehat{BCA}+\widehat{CAB}=180độ\)
\(70độ+\widehat{BCA}+50độ=180độ\)
\(\widehat{BCA}\) \(=60độ\)
Vì CM là tia phân giác \(\widehat{ACB}\)
=>\(\widehat{ACM}=\widehat{BAM}=\frac{\widehat{ACB}}{2}=\frac{60độ}{2}=30độ\)
Xét tam giác AMC có:
\(\widehat{MAC}+\widehat{ACM}+\widehat{CMA}=180độ\)
\(50độ+30độ+\widehat{AMC}=180độ\)
\(\widehat{AMC}=100độ\)
Ta có: \(\widehat{AMC}+\widehat{CMB}=180độ\)
\(100độ+\widehat{CMB}=180độ\)
\(\widehat{CMB}=80độ\)
Vậy \(\widehat{AMC}=100độ;\widehat{BMC}=80độ\)