Cho tam giác ABC vuông tại C, kẻ CH vuông góc AB. Trên các cạnh AB,AC lấy tương ứng hai điểm M và N sao cho BM=BC, CN= CH. Chứng minh rằng:
a,MN vuông góc AC
B,AC+BC < AB+ CH
cho tam giác ABC cân tại A. Trên cạnh BC lần lượt là BC lần lượt lấy các điểm M và N ( M nằm giữa B và N ) sao cho BM = CN. Kẻ MH vuông góc với AB; NK vuông góc với AC. Chứng minh:
a) Tam giác MHB = tam giác NKC
b) AH = AK
c) tam giác AMN cân tại A
Cho ABC vuông tại A có AB < AC, Trên cạnh BC lấy điểm D sao cho BA = BD. Từ D kẻ DE BC (E AC), Đường thẳng DE cắt đường thẳng AB tại M. Chứng minh rằng
a) Tam giác ABE = Tam giác DBE
b) BE Vuông Góc AD
c) Tam giác MBC cân
Bài 5: (3đ) Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC (H thuộc BC). a) Chứng minh ABH = ACH . b) Kẻ HM AB M AB ⊥ ( ) , kẻ HN AC N AC ⊥ ( ) . Chứng minh: MN // BC c) Trên tia đối của tia AB lấy E sao cho AB = AE, kẻ AD vuông góc với EC. Chứng minh AD vuông AH
Cho tam giác ABC vuông tại A. M là điểm bất kì thuộc cạnh BC. Kẻ MI vuông góc với AC tại I. Trên tia đối của tia IM lấy điểm N sao cho MI = IN.
Chứng minh:
a) Góc BAM bằng góc AMI.
b) Tam giác MIC= tam giác NIC
c) Lấy K thuộc cạnh AB sao cho AK = MI. Chứng minh MK//AC.
d) AM=KI
Cho tam giác cân ABC (AB = AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:
a) DM = EN
b) Đường thẳng BC cắt MN tại trung điểm I của MN.c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên BC
Cho tam giác ABC có AB = AC và BC < AB. M là trung điểm của BC.
a. tam giác ABM = tam giác ACM, AM là tia phân giác của góc BAC.
b. Trên cạnh AB lấy điểm N sao cho CB = CD, CN là tia phân giác của góc BCD. Chứng minh: CN vuông góc với BD.
c. Trên tia đối của tia CA lấy điểm E sao cho AD = CE. Chứng minh: BE - CE = 2BN.
Cho tam giác ABC cân tại A. Trên 2 cạnh AB và AC lần lượt lấy hai điểm M và N sao cho AM = AN. Kẻ AH vuông góc với BC, H ∈ BC
a. Chứng minh tam giác ABH = tam giác ACH
b. Chứng minh BN=CM
c. Nếu cho cạnh AH=8cm, AB= 10cm. Tính cạnh BC
Câu 5. Cho tam giác ABC vuông tại B (AB < AC) có AM là tia phân giác góc A (M ∈ BC). Trên cạnh AC lấy điểm N sao cho AB = AN.
a) Chứng minh ∆ABM = ∆ANM.
b) Chứng minh góc BAC= góc CMN