a: BC=căn 10^2-8^2=6cm
CK=8*6/10=4,8cm
b: ΔCKA vuông tại K có KE vuông góc CA
nên CE*CA=CK^2
ΔCKB vuông tại K có KF vuông góc BC
nên CF*CB=CK^2
=>CE*CA=CF*CB
a: BC=căn 10^2-8^2=6cm
CK=8*6/10=4,8cm
b: ΔCKA vuông tại K có KE vuông góc CA
nên CE*CA=CK^2
ΔCKB vuông tại K có KF vuông góc BC
nên CF*CB=CK^2
=>CE*CA=CF*CB
Cho tam giác `ABC` vuông tại A, đường cao `AH`, đường trung tuyến `AO`. Gọi `D,E` lần lượt là hình chiếu của `H` trên `AB,AC`. Qua `A` kẻ đường thẳng vuông góc với `AO` cắt `BC` ở `K`.
Chứng minh : `(BK)/(BH) = (CK)/(CH)`
cho tam giác ABC vuông tại A có đường cao AH ( H∈BC)
a) Cho biết AB=6cm,BC=10cm. Tính AC,AH,BH
bb) Gọi E,F lần lượt là hình chiếu của điểm H lên các cạnh AB,AC. Chứng minh AE.AB=AF.AC và △AFE∼△ABC
c) Kẻ phân giác BD của góc ABC ( D∈ AC). Chứng minh : cotDBC=(AB+BC)/AC
Cho tam giác ABC vuông tại A , đường cao AH , AB = 3cm , BC = 5cm
a) giải tam giác ABC
b) gọi E , F , lần lượt là hình chiếu H trên cạnh AB và AC
- TÍnh độ dài AH
- Chứng minh EF = AH
Cho tam giác ABC vuông tại A và đường cao AH, AB=3 cm, BC=6cm.
a) Giải tam giác
b) Tính AH? Gọi E, F lần lượt là hình chiếu của H trên cạnh AB và AC. Chứng minh EF= AH
c) Tính EA. EB+ AF.FC
cho tam giác ABC nhọn, đường cao AH. Lấy D, E lần lượt là hình chiếu của H trên AB, AC. Gọi F là hình chiếu của A trên DE, K là hình chiếu của H trên DE. Chứng minh DE=EF
Cho tam giác ABC vuông tại C, đường cao CK.
a) Tính BC, CK, BK và AK biết AB = 10cm , AC=8cm.
b) Gọi H và I theo thứ tự là hình chiếu của K trên BC và AC. Tứ giác CHKI là hình gì? Vì sao?
c) Chứng minh;
Cho ∆ABC vuông tại A, đường cao AH, AB = 3cm, BC = 6cm 1. Tính AH và chu vi của tam giác ABC 2. Gọi E, F lần lượt là hình chiếu của H trên cạnh AB và AC a) Tính độ dài AH và chứng minh EF = AH b) Chứng minh EA.EB + AF.FC = EF²
Cho tam giác ABC vuông tại A , đường cao AH vuông góc với BC tại H. Gọi E,F lần lượt là hình chiếu của H trên AB và AC. Gọi M là trung điểm của BC, kẻ AM cắt EF tại K. Cm : a, tứ giác AEHF là hình chữ nhật. B, AE×AB= AF×AC. C AM vuông góc EF tại K .
Giúp mk câu B,C với ạ 💖