a: AC=10cm
BH=4,8cm
c: Xét ΔHBC vuông tại H có HE là đường cao
nên \(BH^2=BE\cdot BC\)
a: AC=10cm
BH=4,8cm
c: Xét ΔHBC vuông tại H có HE là đường cao
nên \(BH^2=BE\cdot BC\)
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm, đường cao AH.
a) Tính BC và AH
b) Kẻ HE vuông góc AB tại E, HF vuông góc AC tại F. Chứng minh tam giác AEH đồng dạng tam giác AHB
c) Chứng minh AH^2 = AF.AC
d) Chứng minh tam giác ABC đồng dạng AFE
e) Tia phân giác BAC cắt EF, BC lần lượt tại I và K. Chứng minh KB.IE = KC.IF
Cho tam giác ABC vuông tại A, AB=6cm, AC=8cm, đường cao AH. Qua H kẻ HE vuông góc AB, HF vuông góc với AC. Gọi M,N lần lượt là trung điểm của HB và HC. Tính diện tích tứ giác MNFE.
Cho tam giác ABC nhọn (AB<AC). các đường cao AE , BF cắt nhau tại H. gọi M là trung điểm của BC qua H vẽ đường thẳng a vuông góc với HM , a cắt AB , Ac lần lượt tại I và K. a) cm: Tam giác ABC ~ Tam giác EFC b) Qua C kẻ đường thẳng b song song với IK , b cắt AH, AB theo thứ tự tại N và D . cm : NC=ND và HI=HK c) Gọi G là giao điểm của CH và AB ,cm: AH/HE + BH/HF + CH/HG > 6
Cho tam giác ABC vuông tại A có AB=6cm; AB=8cm. Tia phân giác của góc BAC cắt BC tại M. Đường thẳng đi qua M và vuông góc với BC lần lượt cắt AC tại H và BA tại K. Tia BH cắt KC tại N. Chứng minh tam giác BNC vuông cân.
Câu 2: Cho tam giác nhọn ABC, các đường cao AE, BF cắt nhau tại H. Gọi M là trung điểm của BC, qua H kẻ đường thẳng vuông góc với HM, a cắt AB, AC lần lượt tại I và K. a, Chứng minh: tam giác ABC đồng dạng tam giác EFC b, Qua C kẻ đường thẳng b song song với IK cắt AH, AB lần lượt tại N và D. Chứng minh: CN=DN; IH=KH c, Gọi G là giao của CH và AB. Chứng minh: \(\frac{AH}{HE}+\frac{BH}{HF}+\frac{HC}{HG}>6\)
Cho tam giác ABC vuông tại A(AB<AC), đường cao AD. Tia phân giác của góc ABC cắt AC tại E. Từ C vẽ đg thẳng vuông góc với đường thẳng BE tại F
a) c/m AE.AB=EC. BE
b) Kẻ FH vuông góc vs AC tại H, c/m góc BCF= góc HFC
Bài 1: Cho tam giác ABC vuông cân tại A, I là trung điểm BC, lấy H là điểm bất kì trên BC, kẻ HE vuông góc với AB, HF vuông góc với AC. Hỏi tam giác IEF là tam giác gì?
Bài 2: Cho tam giác ABC, các đường cao AD, BE, CF cắt nhau tại H. I, K, R lần lượt là trung điểm HA, HB, HC. M, N, P lần lượt là trung điểm BC, AC, AB. a) CM MNIK, PNRK là hình chữ nhật. b) CM P,N,R,K,M,I cùng thuộc 1 đường tròn. c) CM 3 điểm D, E, F cũng thuộc đường tròn trên
Cho △ABC vuông tại A, AH ⊥ BC tại H; AB=8cm; AC=15cm.
a) Tính BH, AH.
b) Từ H kẻ HE ⊥ AB tại E, HF ⊥ AC tại F. Tính EF.
c) Chứng minh AE * AB = AF * AC
d) Qua A kẻ đường vuông góc với EF tại I ,cắt BC tại M. Chứng minh M là trung điểm của BC.
e) Biết diện tích △ABC gấp đôi diện tích tứ giác AEHF. Chứng minh △ABC vuông cân.
Cho tam giác abc vuông tại a, đường cao ah. kẻ he vuông góc với ab, hf vuông góc với ac. chứng minh
a) ef = ah
b) gọi i và k lần lượt là trung điểm bh và ch. chứng minh ei //fk
Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm. Kẻ đường cao AH. Vẽ HE, HF vuông góc với AB, AC
a) Tính độ dài các đoạn thẳng BC, AH, EF
b) Gọi M, N lần lượt là trung điểm của HB và HC. Tứ giác MNFE là hình gì? Tính diện tích tứ giác MNFE