b) Giải:
Áp dụng định lý pytago vào \(\Delta\)ABH vuông tại H và \(\Delta\)ACH vuông tại H có:
AB2 = AH2 + BH2 (1)
AC2 = AH2 + CH2 (2)
Cộng vế (1) và (2) ta đc:
AB2 + CH2 + AH2 = AC2 + HB2 + AH2
=> AB2 + CH2 = AC2 + BH2
-> đpcm.
b) Giải:
Áp dụng định lý pytago vào \(\Delta\)ABH vuông tại H và \(\Delta\)ACH vuông tại H có:
AB2 = AH2 + BH2 (1)
AC2 = AH2 + CH2 (2)
Cộng vế (1) và (2) ta đc:
AB2 + CH2 + AH2 = AC2 + HB2 + AH2
=> AB2 + CH2 = AC2 + BH2
-> đpcm.
Cho tam giác ABC .Qua điểm A vẽ AH vuông góc với BC (H THUỘC BC).Từ điểm H vẽ HK vuông góc với AC (K Thuộc C).qua Kvẽ đường thẳng m song song với BC cắt AB tại E . a,Các cặp tam giác nào bằng nhau ? b,AH vuông góc EK? c,Qua A vẽ đừng thẳng m vuông góc với AH .Chứng minh m song song với EK
Cho tam giác ABC, vẽ phía ngoài tam giác ABC các tam giác vuông tại A là: tam giác ABD và ACE có AB=AD, AC=AE. Kẻ AH vuông góc với BC, OM vuông góc với AH, EN vuông góc với AH. Chứng minh rằng:
a, Tam giác MAE = tam giác MCB
b, AE = À
c, Ba điểm A,E,F thẳng hàng
Cho tam giác ABC có AB=AC tia phân giác của góc A cắt BC tại D.Chứng minh a:tam giác ADB=tam giác ADC. b: Kẻ DH vuông góc với AB (H€AB),DK vuông góc với AC (K€AC).Chứng minh AH=AK. c: Biết góc A = 3 góc C. Tính số đo các góc của tam giác ABC
Cho tam giác ABC . Vẽ về phía ngoài tam giác ABC , các tam giác vuông tại A là ABD, ACE có AB = AD , AC = AE. Kẻ AH vuông với BC, DM vuông góc với AH, EN vuông góc với AH. chứng minh rằng :
a) DM = AH
b) MN đi qua trung ddiểm của DE
Bài 5: Cho tam giác ABC cân tại A. Vẽ AH vuông góc BC tại H.
a/ Chứng minh tam giác AHB bằng tam giác AHC và BH = HC.
b/ Cho biết AB = 13cm; BC = 10cm. Vẽ trung tuyến BM của tam giác ABC cắt AH tại G. Tính AH và AG.
c/ Vẽ trung tuyến CN của tam giác ABC. Chứng minh MN song song BC.
d/ Trên cạnh AB lấy điểm D (D nằm giữa N và B) và trên tia đối tia CA lấy điểm E sao cho BD = CE. Đường thẳng qua C song song với DE và đường thẳng qua D song song với AC cắt nhau tại F. Chứng minh tam giác DFB cân và FC > BC
Bài 4. Cho tam giác ABC nhọn (AB < AC). Gọi M là trung điểm của AC. Trên tia đối MB lấy điểm D sao cho MB = MD.
a) Chứng minh tam giác BMC = tam giác DMA
b) Vẽ AH vuông góc BC ( H thuộc BC). Chứng minh Ah vuông góc AD
c) Chứng minh góc ABC = góc CDA
d) Vẽ CK vuông góc AD (K thuộc AD). Chứng minh BH = DK và H, M, K thẳng hàng
Giúp mình với mai mình nộp bài ồi
cho tam giác ABC cân tại A có ; góc B =50 độ
a, tính các góc còn lại của tam giác ABC
b, kẻ BH vuông góc với AC tại H
kẻ CK vuông góc với AB tại H . chứng minh BH=CK
c, gọi O là giao diểm của BH và CK . chứng minh tam giác OBC cân
Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của gpc1 ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H. Trên tia DE lấy điểm K sao cho DK = AH. Gọi M là trung điểm của DH. Chứng minh rằng: A, M, K thẳng hàng
vho tam giác ABC vuông tại A, vẽ AH vuông góc với BC tại H. tia phân giác của góc BAH cắt BH ở D. chứng minh rằng
a) góc ABH= góc HAC
b) góc ADC= góc DAC
![]()