Cho nửa đường tròn tâm O đường kính AB. LẤY điểm C nằm giữa A và B. Qua C kẻ đường thẳng vuông góc với AB cắt đường tròn tâm O tại I. Trên cung nhỏ BI lấy điểm M ( M khác B và I ) BM cắt CI tại D a) Chứng minh tứ giác ACMD nội tiếp b) Tiếp tuyến tại M của đường tròn tâm O cắt CI tại N. Gọi giao điểm của AM và CI là K. Chứng minh tam giác NMK cân c) Khi M thay đổi trên cung nhỏ BI chứng minh đường tròn ngoại tiếp tam giác AKD luôn đi qua một điểm cố định khác điểm A Giúp với ạ
Cho tam giác ABC vuông ở A. Trên AC lấy một điểm M và vẽ đường tròn đường kính MC. Kẻ BM cắt đường tròn tại D. Đường thẳng DA cắt đường tròn tại S. Chứng minh rằng:
a) ABCD là một tứ giác nội tiếp;
b) \(\widehat{ABD}=\widehat{ACD};\)
c) CA là tia phân giác của góc SCB.
Cho ΔABC vuông ở A. Trên AC lấy điểm M và vẽ đường tròn đường kính MC. Kẻ BM cắt đường tròn tại D. Đường thẳng DA cắt đường tròn tại S. Chứng minh rằng:
a. Tứ giác ABCD nội tiếp
b. \(\widehat{ABD}\) = \(\widehat{ACD}\)
c. CA là phân giác của góc \(\widehat{SCB}\)
\(Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF\)
Cho đường tròn tâm O đường kính AB. Lấy điểm C nằm trên đường tròn sao cho số đo cung AC gấp đôi số đo cung CB. Tiếp tuyến tại B với đường tròn (O) cắt AC tại E. Gọi I là trung điểm của dây AC. a) Chứng minh rằng tứ giác IOBE nội tiếp b) Chứng minh EB→ = EC . EA c) Biết bán kính đường tròn (O) bằng 2cm, tính diện tích tam giác ABE. Giải giúp em với ạ
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Các đường cao BE, CF cắt nhau tại H. Gọi G là giao điểm của EF, BC. Đường thẳng đi qua A và vuông góc với GH tại I cắt BC tại M. Các tiếp tuyến với (O) tại B,C cắt nhau tại S.
a) Chứng minh tứ giác GFIC nội tiếp.
b) Chứng minh M là trung điểm của BC và tam giác AEM đồng dạng với tam giác ABS.
cho ta giác DEF nội tiếp (O) đường kính DE, tia Ox vuông góc DF tại H và cắt (O) tại M từ F kẻ đường thẳng vuông góc với DM tại K và cắt tia Ox tại N đường thẳng KH cắt DE tại P. a) Chứng minh tứ giác MKFH nội tiếp
b) chứng minh tứ giá MEFN là hình bình hành
c) chứng minh PD. EF= FD.PH
Cho đường tròn (O; R), AB và CD là 2 đường kính khác nhau của đường tròn. Tiếp tuyến tại B của đường tròn (O; R) cắt các đường thẳng AC, AD thứ tự tại E và F
a, Chứng minh Tứ giác ABCD là hình chữ nhật
b, ▲ABC ∼ ▲CBE
c, Góc F = Góc CBE
Cho tam giác ABC nhọn AB<AC, nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H
a) Chứng minh tứ giác ABDE nội tiếp?
b) Đường kính CK của đường tròn (O) cắt DE tại M. Chứng minh CF.CK=CA.CB
c) Chứng minh tứ giác AKME nội tiếp và DE vuông góc CK tại M?