Cho tam giác ABC vuông tại A. gọi D,E lần lượt là trung điểm của BC,AC. Đường thẳng qua C vuông góc với BC cắt DE tại F. H là hình chiếu của C lên BF.
a) CM: FH.FB=FE.FD.
b) CM: ΔABH∼ΔECH.
c) Gọi I là trung điểm của EF. CM: A,H,I thẳng hàng.
cho HCN ABCD , H là hình chiếu của B lên AC .M là trung điểm của AH và N là trung điểm của BH qua M kẻ đg thẳng vuông góc với BM cắt CD tại K . CMR MKCN là hbh
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH (H thuộc BC). Gọi M và N lần lượt là hình chiếu của H trên AB và AC.
Qua A kẻ đường thẳng vuông góc với MN cắt BC tại K . CM K là trung điểm của BC. (chỉ ý này thôi ạ)

--------------
(Các ý trước:
a) Giả sử HB = 3, 2 cm , HC = 7,2cm . Tính HA , AC và góc B ; góc C
b) Chứng minh: AM.AB = AN.AC và HB.HC = AM.MB + AN.NC
cho tam giác abc vuông tại a ab lớn hơn ac nội tiếp đường tròn tâm o đường cao ah gọi d là điểm đối xứng với a qua bc gọi k là hình chiếu vuông góc của a lên bc qua h kẻ đường thẳng song song với bc cắt ac tại i đường thẳng bd cắt đường tròn tâm o tại n (n khác b ) tiếp tuyến của đường tròn o tại d cắt đường thẳng bc tại p . chứng minh đường thẳng bc tiếp xúc với đường tròn ngoại tiếp tam giác anp
Cho tam giác ABC vuông tại A, đường cao AH. Trên tia đối của tia AB lấy điểm K sao cho góc AKC = 600. D và E lần lượt là hình chiếu của H trên AB, AC. Qua A kẻ đường thẳng vuông góc với DE cắt BC tại M (M thuộc BC). Kẻ tia Cx là tia phân giác của góc ACB, qua M kẻ đường thẳng song song với AC cắt Cx tại F. Chứng minh BF vuông góc CF.
cho tam giác ABC vuông tại A, gọi D là trung điểm của cạnh BC.Lấy điểm M bất kì trên đoạn thẳng AD(M không trùng với A).Gọi N,P theo thứ tự là hình chiếu vuông góc của M xuống AB,AC và H la hình chiếu vuông góc của N xuống đường thẳng PD .
a) Chứng minh AH vuông góc với BH.
b) Đường thẳng qua B song song với AD cắt đường trung trực của AB tại I
chứng minh ba điểm H,N,I thẳng hàng
Đường tròn (0) có dây cung BC cố định. A là một điểm thay đổi trên cung lớn BC sao cho tam giác ABC nhọn. Vẽ đường kính AD cua (0). Đường thẳng BD cắt đường thẳng AC tại E , đường thẳng CD cắt đường thẳng AB tại F. Gọi P, Q lần lượt là điểm đối xứng của D qua AB, AC
a, Cm A, P, F, E, Q thuộc một đường trò n tam S
b, M là trung điểm EF. DM cắt(S) tại N. I là hình chiếu vuông góc của E trên AN. Cm B, I, M thẳng hàng
Cho tam giác nhọn ABC (AB<AC). Ở miền trong của tam giác ABC lấy điểm M bất kì. Gọi H; I; K lần lượt là hình chiếu của M lên BC; AC; AB sao cho \(\widehat{HIK}=90^0\). Đường thẳng kẻ từ A vuông góc với IK cắt đường thẳng thẳng kẻ từ C vuông góc với IH tại điểm O.
CMR: BO vuông góc với HK ?
Cho (O;R) đường kính BC và A nằm trên đường tròn sao cho AB < AC . H là hình chiếu của A trên BC . Gọi M và N lần lượt là hình chiếu của H lên AB ,AC, MN cắt BC tại D , AH cắt MN tại I . a, chứng minh tứ giác BMNC nội tiếp và DM.DN=DB.DC b, đường thẳng vuông góc MN tại I ,cắt đường thẳng qua O vuông góc BC tại Q . QH cắt (O) tại P . Tính độ dài IQ theo R và chứng minh 3 điểm D,A,P thẳng hàng
cho tam giác ABC vuông tại A ( AB<AC) đường cao AH . gọi D,E lần lượt là hình chiếu vuông góc của H lên AB và AC. hai đường thẳng BC vad DE cắt nhau tại I.
a) cm: AH=DE
b)cmr" ID.IE=IB.TC
c) các đường thẳng HD, HE lân lượt cắt đường thẳng BA tại M và cmr BM//CN