Cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E lần lượt là hình chiếu của H trên AB,AC. Biết AB=4cm, AC=6cm.
a) Chứng minh : AD.AB=AE.AC
b) Tính độ dài AE
c) Kẻ phân giác AI của góc BAC. Tính độ dài HI
d) Đường thẳng vuông góc với DE tại D cắt BC tại M. Chứng minh M là trung điểm của BH
Bài 2 : Cho tam giác ABC vuông ở A. Gỉa sử D là 1 điểm trên cạnh huyền BC và E.F lần lượt là hình chiếu của D lên các cạnh AB, AC. CMR : AE.EB + AF.FC=BD.DC
Bài IV (3,5 điểm) Cho đường tròn (O; R) đường kính AB. Bán kính CO vuông góc với AB, M là điểm bất kì trên cung nhỏ AC (M khác A và C), BM cắt AC tại H. Gọi K là hình chiếu của H trên AB.
1) Chứng minh tứ giác CBKH là tứ giác nội tiếp.
2) Chứng minh góc ACM = góc ACK
Cho (O), bán kính R. Bán kính CO vuông góc với AB. M là 1 điểm bất kì trên cung nhỏ AC (M khác A và C). BM giao AC tại H. Gọi K là hình chiếu của H trên AB.
a, Chứng minh tứ giác CBKH nội tiếp.
b, góc ACM = góc ACK.
c, Trên BM lấy E sao cho BE = AM. Chứng minh tam giác ACM cân tại C?
Cho đường tròn (O,R) đường kính AB. Bán kính CO vuông góc với AB, M là điểm bất kì trên cung nhỏ AC ( M khác A và C), BM cắt AC tại H. Gọi K là hình chiếu của H trên AB
1, Chứng minh CBKH là tứ giác nội tiếp và ACM=ACK
2,Trên đoạn thẳng BM lấy điểm E sao cho BE=AM. Chứng minh tam giác ECM vuông cân tại C
3, Gọi d, là tiếp tuyến của (O) tại điểm A. Cho P là 1 điểm nằm trên d sao cho hai điểm P,C nằm trên cùng một mặt phẳng bờ AB và AP.MB/AM=R. Chứng minh đường thẳng PB đi qua trung điểm của HK
cho tam giác ABC vuông tại A, đường cao AH. gọi D là hình chiếu của H trên AC. gọi E là hình chiếu cửa H trên AB. biết HD= 18cm, HE=12cm. tính AB, AC
Cho đường tròn (O; R) có đường kính AB. Bán kính CO vuông góc với AB, M là một điểm bất kỳ trên cung nhỏ AC (M thuộc cung A, C); BM cắt AC tại H. Gọi K là hình chiếu của H trên AB.
1) Chứng minh CBKH là tứ giác nội tiếp.
2) CA là tia phân giác của ^MCK
Câu 4(3,0 điểm) Cho tam giác ABC vuông tại A.
a) Cho AB = 9 cm; AC = 12 cm. Tính cạnh BC và các góc còn lại của tam giác ABC
( Làm tròn đến độ)
b) Gọi H là hình chiếu của A trên BC; E, F lần lượt là hình chiếu của H trên AB, AC. Chứng minh rằng: AH = EF và AE.AB = AF.AC
c) Gọi K là trung điểm của BC, biết AK cắt EF tại I. Chứng tỏ rằng AK vuông góc với EF.
Câu 5 Cho tam giác ABC vuông tại A có đường cao AH.
1) Cho biết AB = 3 cm, AC = 4 cm. Tính độ dài các đoạn BC, HB, HC, AH;
2) kẻ HE vuông góc với AB, HF vuông góc với AC (E thuộc AB, F thuộc AC).
Chứng minh
3)Chứng minh:
Câu 4(3,0 điểm) Cho tam giác ABC vuông tại A.
a) Cho AB = 9 cm; AC = 12 cm. Tính cạnh BC và các góc còn lại của tam giác ABC
( Làm tròn đến độ)
b) Gọi H là hình chiếu của A trên BC; E, F lần lượt là hình chiếu của H trên AB, AC. Chứng minh rằng: AH = EF và AE.AB = AF.AC
c) Gọi K là trung điểm của BC, biết AK cắt EF tại I. Chứng tỏ rằng AK vuông góc với EF.
Câu 5 Cho tam giác ABC vuông tại A có đường cao AH.
1) Cho biết AB = 3 cm, AC = 4 cm. Tính độ dài các đoạn BC, HB, HC, AH;
2) kẻ HE vuông góc với AB, HF vuông góc với AC (E thuộc AB, F thuộc AC).
Chứng minh
3)Chứng minh:
cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC)
a) biết HB = 4cm , HC = 9cm. tính AH và số đo góc ABC
b) gọi D là hình chiếu của H trên AB; E là hình chiếu của H trên AC. chứng minh CE.BD.AC.AB = AH4
c) kẻ AI vuông góc với ED (I thuộc BC). chứng minh I là trung điểm BC
giải chi tiết giúp mình ạ! mình cảm ơn nhiều<3
Cho (O;R) , đường kính AB, CD vuông góc với nhau. M là điểm bất kì trên cung AC nhỏ, BM cắt AC tại H. Gọi K là hình chiếu của H trên AB. Gọi d là tiếp tuyến của (O) tại A. P thuộc d sao cho P, C thuộc nửa mặt phẳng bờ AB và \(\dfrac{AP\cdot MB}{MA}=R\) . CMR : BP đi qua trung điểm của HK.